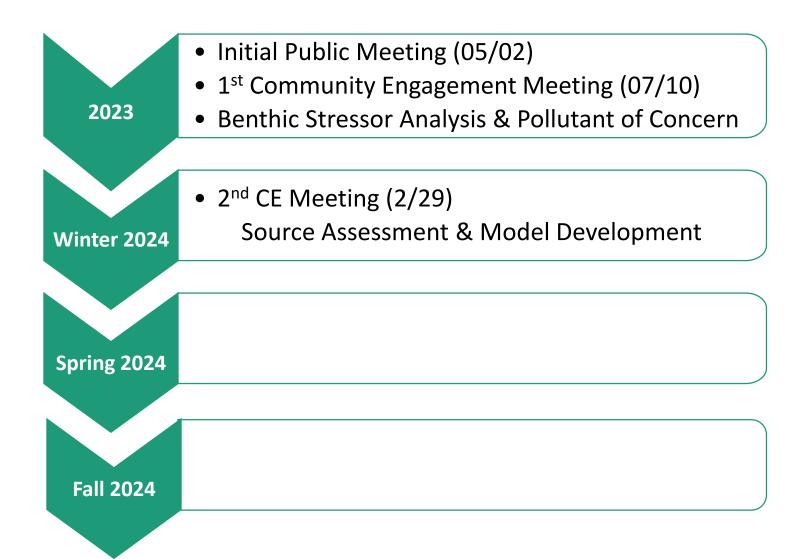


Welcome

to a Watershed Study

Benthic TMDL Study on Deep Run, Dover Creek, & Upham Brook Watersheds in Henrico & Goochland Counties & the City of Richmond


DEQ TMDL Community Engagement Meeting #2

Denise Moyer, TMDL Coordinator, Virginia Department of Environmental Quality Katie Shoemaker, Wetland Studies and Solutions, Inc.

Dr. Robert Brent, James Madison University

February 29, 2024

Project Timeline

Role of Community Members

Participate in the process

Keep the study

- Realistic
- Reasonable
- Reflective of local conditions

Provide Information & Feedback on

- Stressors to aquatic life
- Land use
- Pollutant sources
- Community meetings & Public meetings

Example

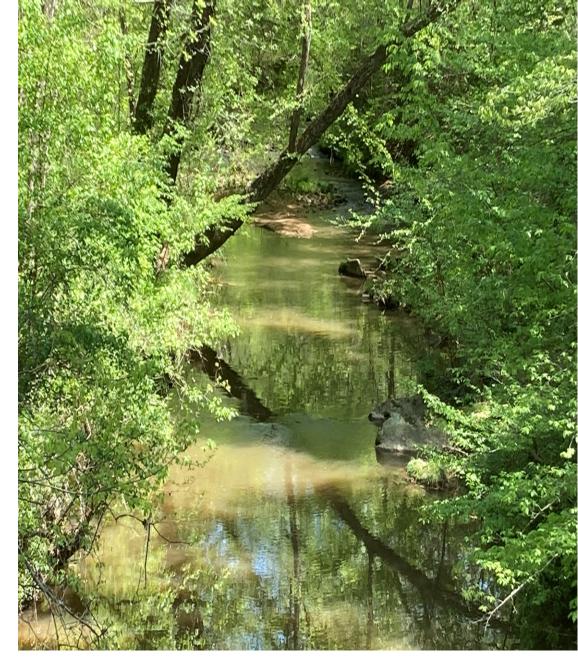
- ID missing pieces to the puzzle?...
- Determine outcome?...
- How to deal with the outcome?...

Agenda

Welcome & Introduction

 Overview: DEQ continuous planning process, watersheds of interest & stressor pollutants

Pollutant Source Assessment


- Land cover distributions
- Tabulating permitted sources methods used to develop allocated loads
- Tabulating count of existing BMPs by type
- Question & Answer

Model Development

- Watershed modeling approach (overview of GWLF)
- AllForX method to set pollutant targets
- Pollutant target loads
- Question & Answer

Conclude Meeting

Likely timeline moving forward

Virginia's Water Quality Standards

Protect 6 designated uses...

- aquatic life
- wildlife
- fishing
- shellfish
- swimming
- drinking water

DEQ Continuing Planning Process: Monitoring

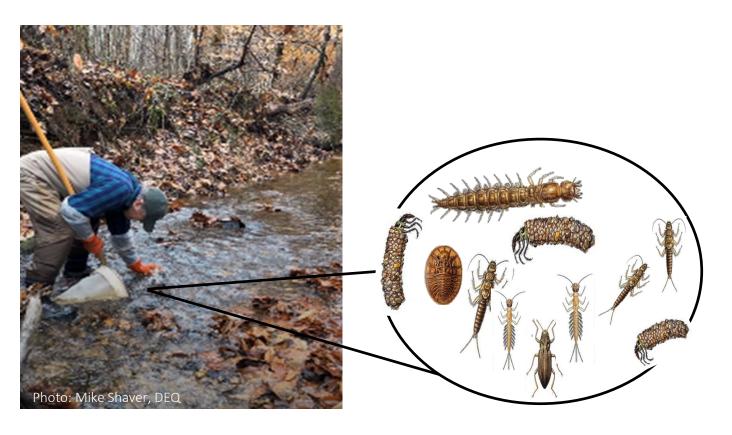
Monitoring

- Physical
- Biological
- Chemical
- Fish tissue

Assessment

- 305(b) Report
- 303(d) Waters

Water
Quality
Standards


Implementation

- Nonpoint Source Implementation Plans
- Permits for regulated sources

TMDL Development

- Pollutant Diet
- Local Input

Monitoring aquatic life... BUGS

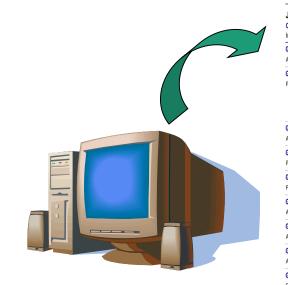
DEQ Continuing Planning Process: Assessment

Monitoring

- Physical
- Biological
- Chemical
- Fish tissue

Assessment

- 305(b) Report
- 303(d) Waters


Water
Quality
Standards

Implementation

- Nonpoint Source Implementation Plans
- Permits for regulated sources

TMDL Development

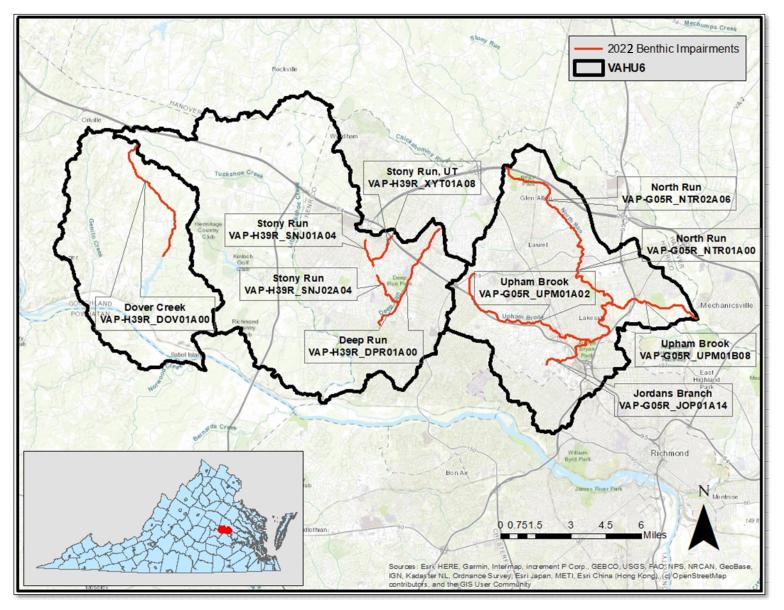
- Pollutant Diet
- Local Input

2020 Impaired Waters - 303(d) List

Category 5 - Waters needing Total Maximum Daily Load Study

Category 3 - waters needing Total Maximum Daily Load Study							
James River Bas Cause Group Code Impaired Use	sin Water Name Cause	Cause Category	Estuary (Sq. Miles)	Reservoir (Acres)	River (Miles)	Initial List Date	TMDL Dev. Priority
G01E-02-EBEN	James River						
Aquatic Life	Estuarine Bioassessments	5A	6.547			2012	L
G01E-03-PCB	James River and Various Tributaries						
Fish Consumption	PCBs in Fish Tissue	5A	62.904			2002	Н
	PCBs in Fish Tissue	5A	1.914			2004	Н
	PCBs in Fish Tissue	5A	183.258		7.51	2006	Н
	PCBs in Fish Tissue	5A	0.002			2008	Н
G01L-01-CHLA	Falling Creek Reservoir						
Aquatic Life	Chlorophyll-a	5A		88.37		2018	L
G01R-01-PCB	Goode Creek						
Fish Consumption	Polychlorinated Biphenyls (PCBs)	5A			1.21	2012	Н
G01R-02-PCB	Almond Creek						
Fish Consumption	Polychlorinated Biphenyls (PCBs)	5A			2.10	2012	Н
G01R-02-PH	XVO and XVP - Almond Creek, UT						
Aquatic Life	pH	5A			0.82	2004	L
G01R-04-DO	Falling Creek						
Aquatic Life	Dissolved Oxygen	5A			0.98	2008	L
G01R-05-PH	Kingsland Creek						
Aquatic Life	pH	5C			8.54	2006	L
G01R-06-PCB	Gillies Creek						
Fish Assessments	Patrick and Plate of (PARA)	**			£ 00	0040	

Aquatic Life Impairments


Upham Brook

- North Run
- Jordans Branch

Deep Run

- Stony Run
- Stony Run UT

Dover Creek

DEQ Continuing Planning Process: TMDL

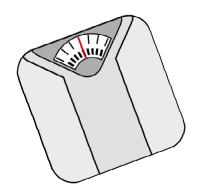
Monitoring

- Physical
- Biological
- Chemical
- Fish tissue

Assessment

- 305(b) Report
- 303(d) Waters

Water
Quality
Standards


Implementation

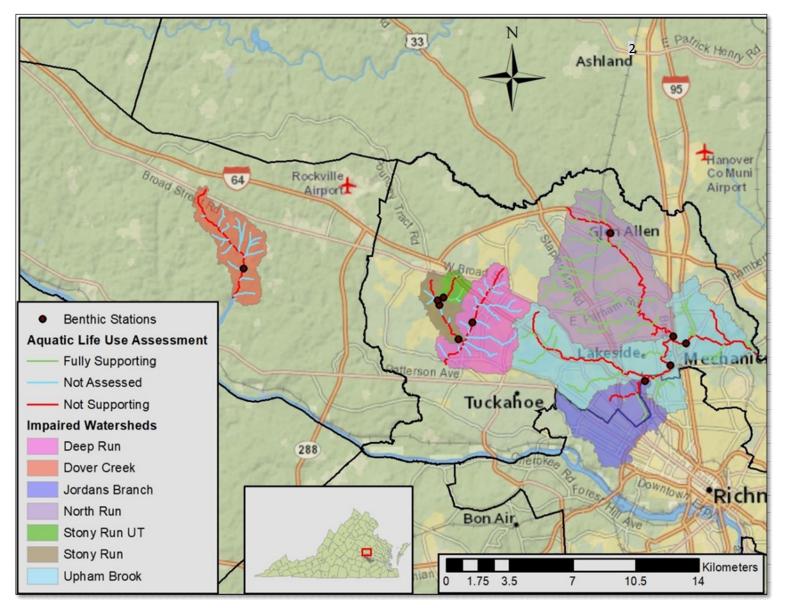
- Nonpoint Source
 Implementation Plans
- Permits for regulated sources

TMDL Development

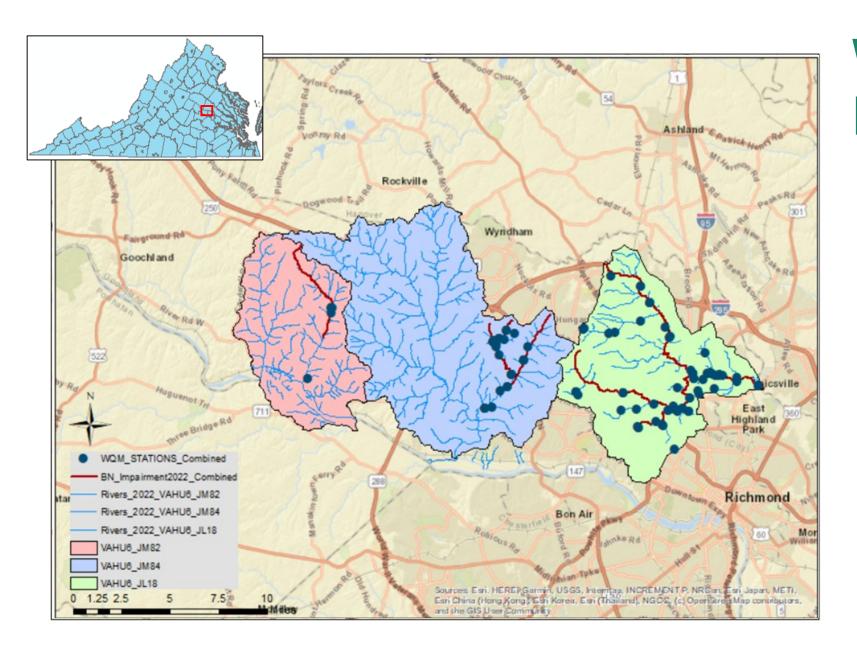
- Pollutant Diet
- Local Input

Total Maximum Daily Load "Pollutant Diet"

Study Watersheds

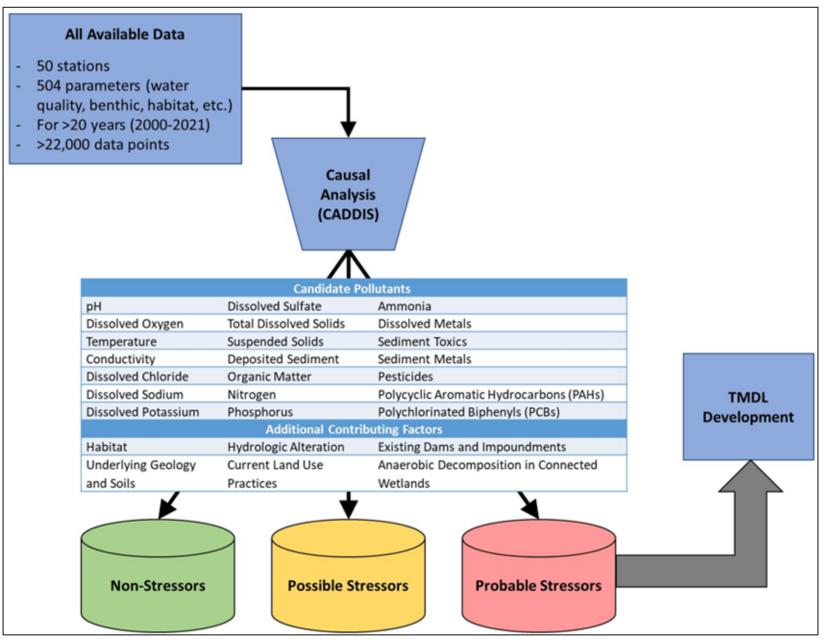

Upham Brook

- North Run
- Jordans Branch


Deep Run

- Stony Run
- Stony Run UT

Dover Creek



Water Quality Monitoring

- Temperature
- pH
- Dissolved Oxygen
- Conductivity
- Nutrients
- Total Suspended Solids (TSS)
- lons
- Metals
- And More!

Aquatic Life Stressor Analysis

Analysis Scores by Stream & Candidate Stressor

Candidate Stressor	Deep Run	Dover Creek	Jordans Branch	North Run	Stony Run	Stony Run UT	Upham Brook
Temperature	-8	-10	-5	-6	-5	-8	-6
pH	-24	-23	-23	6	-24	-24	-9
Dissolved Oxygen	-5	-14	-2	13	1	-9	3
Conductivity/Total Dissolved Solids	3	-11	1	-1	2	3	3
Dissolved Sodium	3	-13	3	0	1	2	1
Dissolved Potassium	-3	-1	-1	-1	-3	-4	-2
Dissolved Chloride	-1	-13	-3	-10	-10	-3	-4
Dissolved Sulfate	-9	-11	-10	-12	-10	-12	-9
Sediment	10	5	9	12	12	12	12
Organic Matter	-1	0	-2	12	-1	-1	0
Phosphorus	-2	11	2	3	5	-2	9
Nitrogen	-11	2	1	-9	-9	-8	3
Ammonia	-15	-12	-13	-13	-15	-14	-12
Dissolved Metals	-13	-13	-13	-13	-13	-12	-13
Sediment Toxics	-2	-2	-5	-8	-6	-5	-2

- Green indicates nonstressors
- Orange indicates possible stressors
- Red indicates probable stressors.

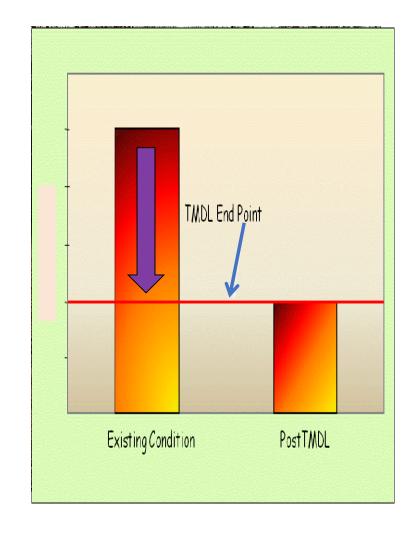
Probable stressors and TMDL targets selected

Stream	Probable Stressors	TMDL Target		
Deep Run	-Sediment	-Sediment		
Davier Crack	-Sediment	-Sediment		
Dover Creek	-Phosphorus	-Phosphorus		
Jordans Branch	-Sediment	-Sediment		
North Run	-Sediment (-pH, Dissolved Oxygen, Organic Matter – Natural Conditions)	-Sediment		
Stony Run	-Sediment -Phosphorus	-Sediment -Phosphorus		
Stony Run UT	-Sediment	-Sediment		
Upham Brook	-Sediment -Phosphorus	-Sediment -Phosphorus		

TMDL Equation

TMDL = WLA + LA + MOS

TMDL = Total Maximum Daily Load


WLA = Waste Load Allocation of permitted point sources

LA = Load Allocation of nonpoint sources

MOS = Margin of Safety to include variances & future growth

Existing Condition = current load discharged to the water body

Reduction (%) = (current load – TMDL)/current load x 100

Modeling Approach

Handout

DEQ Continuing Planning Process: Implementation Plan

Monitoring

- Physical
- Biological
- Chemical
- Fish tissue

Assessment

- 305(b) Report
- 303(d) Waters

Water Quality Standards

Implementation

- Nonpoint Source Implementation Plans
- Permits for regulated sources

TMDL Development

- Pollutant Diet
- Local Input

IP Report Content

- Pollutant reduction needs
 - Review TMDL studies & factor in changes since TMDLs
 - Land use and population changes
- Best Management Practices
 - Stakeholder input on practices most applicable locally
 - Quantify implementation actions
 - Assess costs and benefits of actions
- Implementation Plan Strategies
 - Measurable goals/milestones
 - Stakeholders' roles
 - Integrate with other plans
 - Identify potential funding sources

Project Timeline

2023

- Initial Public Meeting (05/02)
- 1st Community Engagement Meeting (07/10)
- Benthic Stressor Analysis & Pollutant of Concern

Winter 2024

• 2nd CE Meeting (2/29)
Source Assessment & Model Development

Spring 2024

• 3rd CE Meeting
Load Reduction Scenarios

Fall 2024

- Final Public Meeting & Comment Period
- Implementation Plan

Questions?

