

A Watershed Study in Goochland and Henrico Counties

Community Kick-Off Meeting

May 2, 2023

Introductions

Denise Moyer TMDL Coordinator

Robert Breeding
TMDL Watershed
Coordinator

Jennifer Palmore WQ Planning Team Leader

Piedmont WQ Monitoring Staff

Warren Smigo Biologist

Mike Shaver Biologist

Overview

Part I: DEQ's process for identifying & addressing impaired streams

- Water Quality Monitoring
- Assessments
- TMDL Studies
- Implementation plan

Part 2: TMDL Study Area: Watersheds of interest

Part 3: The TMDL process

...Next steps and what you can do to help!

Poll Question

Have you ever been part of a watershed TMDL development?

- 1. No, I'm new to this.
- 2. Yes, I'm vaguely familiar with the process.
- 3. Yes, I'm very familiar with the process.

Part I:

The DEQ Process for Identifying & Addressing Impaired Streams

Federal Clean Water Act (1972)

Requires states to:

- Assign "designated uses" to waterways
- Develop water quality standards
- Develop a program to monitor and report on the status of its water quality
- List impaired waters & develop TMDLs

Virginia's Water Quality Standards

WQS protect 6 designated uses

- aquatic life
- wildlife
- fishing
- shellfish
- swimming
- drinking water

Why a study?

- Aquatic life designated use
 All waters should support "the propagation and growth of a balanced, indigenous population of aquatic life"
- What does this mean?
 Waters should be free of substances in harmful amounts to aquatic life
- Monitor bugs
 aquatic macroinvertebrates to determine if the standard is met

Why should we care about bugs?

- Consume algae & organic matter → nutrient cycling
- Aquatic food chain
- Our "canary in the coal mine"
 - Chemical monitoring = a snapshot in time
 - Relatively long lived
 - Relatively immobile

Aquatic Life Use Impairments

Water bugs represent a longer term picture of water quality than water samples.

Aquatic Life Use Impairments

Water bugs represent a longer term picture of water quality than water samples.

Virginia Stream Condition Index (VSCI)

- Multi-metric index: Diversity, pollution tolerance, feeding group
- Tells us there is an impairment but not what the pollutant is...

What is a TMDL?

- The Clean Water Act tasks DEQ to address impaired waters by conducting a Total Maximum Daily Load (TMDL) study.
- The TMDL is the amount of pollutant that can enter a waterbody and still meet the water quality standard.

"Pollution Diet"

Questions?

Part II:

Watersheds of Interest

Poll Question

What is your interest in this project?

- 1. I live in this area.
- 2. I work for a facility in this area.
- 3. I work for a facility in this area with a permit.
- 4. I don't live or work here but I visit for recreation.
- 5. I am just interested in what DEQ is up to.

Henrico & Goochland Project Area

- 1. Dover Creek
- 2. a. Deep Run
 - b. Stony Run
 - c. Stony Run UT
- 3. a. Upham Brook
 - **b. Jordans Branch**
 - c. North Run

Poll Question

Which watershed are you here to learn more about?

- 1. Watershed 1 (Dover Cr in Goochland Co).
- 2. Watershed 2 (Deep Run, Stony Run, Stony Run UT).
- 3. Watershed 3 (Upham Brook, Jordans Branch, North Run).
- 4. Just interested in learning more about DEQ's water quality improvement process!

Stream Name	First listed	Length (miles)	Impairment Description
Deep Run	2016	4.16	Deep Run from its headwaters to the pond at river mile 1.47
Dover Creek	2020	4.76	Dover Creek from its headwaters to the upstream limit of Dover Lake
Jordans Branch	2016	2.19	Headwaters to mouth at Upham Brook
North Run	2014	4.24	North Run from Hungary Creek to its mouth at Upham Brook
	2008	3.66	North Run from its headwaters to Hungary Creek
Stony Run	2008	1.01	Headwaters to the extent of backwater at the pond
	2016	1.35	From the dam of the pond downstream to the mouth at Deep Run
Stony Run, UT (XYT)	2008	1.27	Headwaters to the mouth at Stony Run
Upham Brook	2016	10.99	Headwaters to the mouth at the Chickahominy River, excluding Upham Brook from Flippen Creek to the UT above Wilkinson Road
29	2016	1.16	Flippen Creek downstream to UT above Wilkinson Road

Water Quality Monitoring

- Temperature
- pH
- Dissolved Oxygen
- Conductivity
- Nutrients
- Total Suspended Solids (TSS)
- lons
- Metals
- And More!

Watershed I: Dover Creek

Impairment: 4.76 mi
Headwaters to upstream
limit of Dover Lake

Watershed I: Dover Creek VSCI Score

Watershed II: Deep Run

Impairment: 4.16 mi Headwaters to pond at RMI 1.47

Watershed II: Deep Run VSCI Score

Watershed II: Stony Run

Impairment:
1.01 & 1.35 mi
Headwaters to
backwater at pond &
from dam to mouth at
Deep Run

Watershed II: Stony Run VSCI Score

Watershed II: Stony Run UT

Impairment: 1.27 mi
Headwaters to mouth
at Stony Run

Watershed II: Stony Run UT VSCI Score

Watershed III: Upham Brook

Impairment: 12.15 mi Headwaters to mouth

Watershed III: Upham Brook VSCI Score

Watershed III: Jordans Branch

Impairment: 2.19 mi
Headwaters to mouth at
Upham Brook

Watershed III: Jordans Branch VSCI Score

Rep 1 Fall (MACS) Rep 1 Spring (MACS

Watershed III: North Run

Impairment: 7.9 mi

From headwaters to its mouth at Upham Brook

Watershed III: North Run VSCI Score

Questions?

Part III:

The TMDL Study

Stressor Analysis

Pollutants		
рН	Dissolved Sulfate	Ammonia
Dissolved Oxygen	Total Dissolved Ions	Dissolved Metals
Temperature	Suspended Solids	Sediment Toxics
Conductivity	Deposited Sediment	Sediment Metals
Dissolved Chloride	Organic Matter	Pesticides
Dissolved Sodium	Nitrogen	Polycyclic Aromatic Hydrocarbons (PAHs)
Dissolved Potassium	Phosphorus	Polychlorinated Biphenyls (PCBs)
Additional Contributing Factors		
Habitat	Hydrologic Alteration	Existing Dams and Impoundments
Natural low gradient	Current Land Use Practices	Anaerobic decomposition in connected wetlands

Moderately Sensitive: Dragonflies

What is a TMDL?

TMDL = Sum of WLA + Sum of LA + MOS

Where:

TMDL = Total Maximum Daily Load

WLA = Waste Load Allocation (point sources)

LA = Load Allocation (nonpoint sources)

MOS = Margin of Safety

Current Load = current loads discharged to the water body, which will be determined during this study

Reduction = (current load –TMDL)/ current load x 100%

TMDL Development: What's the magic number...

- 1. Identify sources of the pollutant
- 2. Model their path to the stream
- 3. Determine reductions needed from each source to meet standard

Sediment Example **Forest:** 0% reduction **Cropland:** 30% reduction **Residential:** 50% reduction Pasture: **Urban:** 40% reduction 75% reduction **Impaired stream Point sources:** Sediment load = 37 tons/yr 0% reduction

Diagram: Adapted from the Center for TMDL and Watershed Studies at Virginia Tech

How can you get involved? Participate?

- Represent the local community
- Provide feedback on
 - Stressors to the benthic community
 - Land use
 - Pollutant sources
 - Community Engagement Meetings
- Join an Environmental Conservation Group
 - Help with river clean ups
 - Become a citizen monitor

What's Next?

Join us for the next Community Engagement Meeting!

Monday, *July 10, 2023 (tentative)*2:00 p.m. – 4:00 p.m.

DEQ-PRO Office

Community Engagement Meeting or Technical Advisory Group?

✓ COMMUNITY ENGAGEMENT (CE) MEETINGS

- This is DEQ's typical meeting, no request needed
- Formerly known as TAC
- Open to the public & anyone in attendance can participate
 & advise DEQ on TMDL development

✓ TECHNICAL ADVISORY GROUP (TAG)

- Upon request during initial public comment period
- Instead of CE Meeting
- Formal panel with approved membership that advises DEQ on TMDL development
 - Cross-section of stakeholders
 - Members commit to attend multiple meetings
 - Non-members may attend only as observers

Project Timeline

Spring 2023

- 1St public meeting (05/2)
- 1st CE Meeting (07/10 tentative)
- Stressor Analysis Complete

Fall 2023

- 2nd CE Meeting (October)
- TMDL Development

Winter 2024

• 3rd CE Meeting (January)

Summer 2024

- Final Public Meeting (August)
- IP Begins

Poll Question

Question: Are you interested in participating in the Community Engagement Meetings for this project?

A. Yes.

B. No.

C. Maybe, notify me of meetings.

Please send all comments in writing to <u>Denise.Moyer@deq.Virginia.gov</u> or 4949-A Cox Rd, Glen Allen, VA 23060

The 30 day public comment period will end on 1 Jun 2023.

To learn more about TMDLs, visit DEQ's website: https://www.deq.virginia.gov/water/water-quality/tmdl-development/tmdls-under-development

Questions?

