

Blalock, Susan <susan.blalock@deq.virginia.gov>

Fwd: Semi-Monthly Daily LFG Well Temperature Update

1 message

Bazyk, Crystal <crystal.bazyk@deq.virginia.gov>
To: Susan Blalock <susan.blalock@deq.virginia.gov>

Tue, Nov 1, 2022 at 5:06 PM

----- Forwarded message ------

From: King, Brandon < BKing@scsengineers.com>

Date: Tue, Nov 1, 2022 at 4:54 PM

Subject: Semi-Monthly Daily LFG Well Temperature Update

To: crystal.bazyk@deq.virginia.gov <crystal.bazyk@deq.virginia.gov>, hall.kristen@epa.gov <hall.kristen@epa.gov>, jeff.hurst@deq.virginia.gov <jeff.hurst@deq.virginia.gov>, willard.erinm@epa.gov <willard.erinm@epa.gov>, stacy.bowers@deq.virginia.gov>, David Cochran <dcochran@bristolva.org>, Randall Eads <CityManager@bristolva.org>, 'mmartin@bristolva.org' (mmartin@bristolva.org) <mmartin@bristolva.org>, Joey Lamie <Joey.Lamie@bristolva.org>, Jake Chandler <jacob.chandler@bristolva.org>
CC: Dick, Bob <BDick@scsengineers.com>, Warren, Charles <CWarren@scsengineers.com>, Mahon, Ryan <RMahon@scsengineers.com>, Nachman, Lucas <LNachman@scsengineers.com>, Lock, Tom <TLock@scsengineers.com>

Ms. Hall and Ms. Bazyk,

In accordance with EPA's letter, "Approval of Higher Operating Temperature Values of Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Facility" from August 2021, I am providing the November 1, 2022 status update on the existing wells, expansion of the gas collection system, and continuing operating and monitoring results, covering the period from October 16-31, 2022.

Wells 37, 51, 56, 57, and 67 had intermittent periods greater than 145F during this reporting period according to the City's data and were above the 145F temperature compliance threshold by the end of the reporting period. However, wells 54 and 64 remained below 145F throughout this reporting period. SCS received lab reports from Enthalpy during this period for sampling events on 10/12/22 for wells GW-37 and GW-67, as well as the event on 10/19/22 for wells GW-37 and GW-57. The lab reports are attached for reference.

CO results from 10/12/22 samples:

EW-37 - 94.5 ppm

EW-67 - 580 ppm

CO results from 10/19/22 samples:

EW-57: 102 ppm

EW-37: 94.9 ppm

SCS is working with the City to procure materials for the south leachate cleanout LFG System modification project, which SCS anticipates to begin construction in November. The temperature monitoring system installation project has just

gotten underway with drilling of probe TP-1 initiated on 10/26/22. The City is continuing steadfast cover efforts in the Permit 498 Landfill. Below is a photo of progress through today.

Let me know if you have any questions.

Thank you,

D. Brandon King

SCS Engineers

Project Manager

15521 Midlothian Turnpike, Suite 305

Midlothian, VA 23113

Main 804-378-7440

Direct 804-486-1902

Cell 804-840-7846

--

Crystal C. Bazyk
Enforcement and Air Compliance/Monitoring Manager
Virginia Department of Environmental Quality
355-A Deadmore Street
Abingdon, VA 24210
276-676-4829

3 attachments

22J1080_2 EA_TO15_Air_MDL-dev 10 28 2022 1513.pdf 331K

	٦.			Month	October	October	October	October	October	October	October	October	October	October	October	October	October	October	October	October
	Depth	Drill		Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday
a a	Ď		Se	Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Note	Well	Date	Phase	Well Number																
1	102	10/16/2016	Old Well	35	95	78	82	77	80	75	70	70	72	74	68	74	70	70	66	68
2	70	9/6/2017	Old Well	39	105	92	92	88	90	90	95	100	100	105	101	109	107	102	100	105
3	100	9/7/2017	Old Well	40	110	111	112	111	110	108	118	120	122	119	120	119	119	124	125	122
4	110	10/4/2016	Old Well	46	130	130	130	130	132	133	103	130	132	133	135	135	135	140	140	142
5	120	10/4/2016	Old Well	47	130	128	131	132	134	134	120	120	125	127	124	125	120	128	125	123
6	120	9/17/2013	Old Well	29	115	110	110	112	111	110	82	90	89	92	99	95	95	95	100	104
7	100	8/23/2017	Old Well	30R	135	132	134	138	133	130	130	130	132	132	131	131	131	132	133	135
8	120	8/30/2017	Old Well	31R	125	116	110	112	114	110	90	85	88	88	90	89	88	88	90	125
9	70	7/29/2016	Old Well	32	80	72	72	68	73	72	70	72	76	76	75	74	75	77	86	75
10	100	7/28/2016	Old Well	33	120	108	111	114	109	111	105	117	115	117	118	118	120	117	120	119
11	100	7/30/2016	Old Well	34	125	119	120	118	120	120	105	110	112	112	110	111	110	114	110	112
12	100	8/1/2016	Old Well	36	80	76	72	76	78	80	60	50	55	60	65	66	60	60	66	70
13	100	8/24/2017	Old Well	37	140	140	138	139	135	138	140	145	140	140	142	140	140	140	145	146
14	50	8/25/2017	Old Well	38	116	111	106	112	105	108	100	90	95	95	90	93	96	92	99	100
15	75	9/8/2017	Old Well	41	120	130	132	130	138	136	140	140	140	142	145	140	140	141	140	140
16	57	9/8/2017	Old Well	42	105	108	105	115	115	117	110	110	111	111	113	114	114	112	115	115
17	110	10/7/2016	Old Well	48	90	78	72	88	90	85	50	70	75	78	80	79	78	80	90	81
				L	l			I.	l	l	l		l		I.	l				
1	120	10/1/2021	New Well	32R	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall	Too Tall
2	110	10/1/2021	New Well	49	145	145	145	140	145	142	103	128	135	135	132	135	138	137	130	130
3	96	10/1/2021	New Well	50	135	129	132	130	132	130	122	122	129	130	130	130	130	128	130	128
4	114	10/1/2021	New Well	51	140	135	132	132	134	130	145	145	142	140	145	143	144	145	142	146
5	109	10/1/2021	New Well	52	105	98	99	101	98	99	50	75	78	80	80	82	82	79	81	82
6	91	10/1/2021	New Well	53	130	120	119	115	122	125	115	130	131	130	132	130	133	130	130	135
7	91	10/1/2021	New Well	54	140	138	140	135	138	136	130	130	135	135	135	137	134	135	132	135
8	104	10/1/2021	New Well	55	105	98	96	100	102	102	95	100	105	109	110	111	111	108	110	110
9	109	10/1/2021	New Well	56	125	131	133	130	135	133	135	140	141	145	145	145	142	140	145	146
10	103	10/1/2021	New Well	57	145	130	130	132	134	134	140	150	145	142	145	146	145	145	145	148
11	92	10/1/2021	New Well	58	75	66	68	73	74	70	70	70	78	76	78	78	76	78	78	114
12	72	10/1/2021	New Well	59	119	119	118	112	115	110	110	112	114	115	115	115	113	110	106	116
13	120	10/1/2021	New Well	60	128	120	120	122	120	122	120	120	122	125	125	125	125	125	122	129
14	105	10/1/2021	New Well	61	105	98	100	105	108	102	90	95	95	100	100	100	100	97	100	98
15	120	10/1/2021	New Well	62	110	102	106	108	110	105	120	120	125	126	125	125	124	125	125	125
16	117	10/1/2021	New Well	63	128	120	124	124	125	122	110	120	122	123	122	122	124	125	130	128
17	120	10/1/2021	New Well	64	122	124	124	128	130	130	132	135	136	135	135	135	132	135	130	140
18	100	10/1/2021	New Well	65	130	115	112	112	105	100	80	70	75	73	76	76	75	76	77	119
19	102	10/1/2021	New Well	66	118	121	122	120	124	122	130	125	116	118	118	118	118	120	122	124
20	100	10/1/2021	New Well	67	145	148	150	150	148	146	140	140	145	145	145	145	145	140	140	145
21	75	10/1/2021	New Well	68	130	129	122	122	124	124	120	122	124	125	125	127	125	127	128	128

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued:

October 21, 2022 14:15

Harrisburg, PA 17111

Project Number:

[none]

Submitted To:

Tom Lock

Purchase Order:

Client Site I.D.:

Bristol

Enclosed are the results of analyses for samples received by the laboratory on 10/18/2022 10:28. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

100001415

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued:

October 21, 2022 14:15

Harrisburg, PA 17111

Project Number: [none]

Purchase Order:

Submitted To:

Tom Lock

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	22J0865-01	Air	10/12/2022 14:23	10/18/2022 10:28
67	22J0865-02	Air	10/12/2022 14:00	10/18/2022 10:28

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued:

October 21, 2022 14:15

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

ANALYTICAL RESULTS

Project Location: Field Sample #: 37 Sample Description/Location:

Sub Description/Location:

Canister Size: 1.4

Canister ID: 063-00087::00335

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 9.2

Receipt Vacuum(in Hg): 9.2

Flow Controller Type: Passive

Flow Controller ID:

Sample ID: 22J0865-01 Sample Matrix: Air

Sampled: 10/12/2022 14:23

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis													
		ppmv		ALT-145			Date/Time						
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF		alyst					
Carbon Monoxide, as received	94.5	90.0	90.0		9	1	10/20/22 11:46 DFF	Η					

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1 Date Issued:

October 18, 2022 10:28 October 21, 2022 14:15

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

ANALYTICAL RESULTS

Project Location: Field Sample #: 67 Sample Description/Location:

Sub Description/Location:

Canister ID: 063-00204::9205

Final Vacuum(in Hg): 4.2 Receipt Vacuum(in Hg): 4.2

Initial Vacuum(in Hg): 30

Sample ID: 22J0865-02 Sample Matrix: Air

Flow Controller Type: Passive

Canister Size: 1.4

Flow Controller ID:

Sampled: 10/12/2022 14:00 Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

ALT-145 ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 580 9 Carbon Monoxide, as received 90.0 90.0 1 10/20/22 13:06 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued: Octo

October 21, 2022 14:15

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: B

Bristol

Purchase Order:

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GC/TCD - Unadjuste	d, as received basis	Preparation Method:	No Prep VOC GC Air	
22J0865-01	1.00 mL / 1.00 mL	ALT-145	BFJ0773	SFJ0750	AG00026
22J0865-02	1.00 mL / 1.00 mL	ALT-145	BFJ0773	SFJ0750	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued: October 21, 2022 14:15

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

	R	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual	
Batch BFJ0773 - No Prep VO	C GC Air										
Blank (BFJ0773-BLK1)					Prep	pared & /	Analyzed	: 10/20/2	022		
Carbon Monoxide	<	10.0	ppmv								
LCS (BFJ0773-BS1)					Prep	pared & /	Analyzed	: 10/20/2	022		
Methane	4480	500	ppmv	5000		89.6	0-200				
Carbon dioxide	4420	500	ppmv	5000		88.4	0-200				
Oxygen (O2)	5100	500	ppmv	5000		102	0-200				
Nitrogen (N2)	5530	2000	ppmv	5000		111	0-200				
Hydrogen (H2)	5710	200	ppmv	5100		112	0-200				
Carbon Monoxide	4800	10	ppmv	5000		95.9	0-200				
Duplicate (BFJ0773-DUP1)		So	urce: 22J	0865-01	Prep	pared & /	Analyzed	: 10/20/2	022		
Methane	147000	4500	ppmv		14600	00		0.992	25		
Carbon dioxide	223000	4500	ppmv		21900	00		1.53	25		
Oxygen (O2)	71900	4500	ppmv		7120	0		0.989	25		
Hydrogen (H2)	11700	1800	ppmv		1160	0		0.305	25		
Nitrogen (N2)	421000	18000	ppmv		41600	00		1.18	25		
Carbon Monoxide	<	90.0	ppmv		94.5	5		NA	25		
Duplicate (BFJ0773-DUP3)		So	urce: 22J	0731-01	Prep	pared & /	Analyzed	: 10/20/2	022		
Methane	311000	4500	ppmv	<u> </u>	31200	00		0.268	25		
Carbon dioxide	282000	4500	ppmv		28200	00		0.0129	25		
Oxygen (O2)	10200	4500	ppmv		1030	0		0.915	25		
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25		
Nitrogen (N2)	326000	18000	ppmv		32800	00		0.436	25		
Carbon Monoxide	<	90.0	ppmv		<90.	0		NA	25		

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 18, 2022 10:28

4330 Lewis Road, Suite 1

Date Issued:

October 21, 2022 14:15

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Certified Analytes included in this Report

Analyte Certifications Analyte Certifications

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NCDEQ	North Carolina DEQ	495	12/31/2022
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #007	68-03503	10/31/2022
VELAP	NELAP-Virginia Certificate #12098	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

Qualifiers and Definitions

RPD Relative Percent Difference

Qual Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

AIR ANALYSIS
CHAIN OF CUSTODY

Equipment due 10/31

								CONTRACTOR AND ADDRESS OF THE PARTY OF THE P		A SECOND S				to introductions of					
CC	DMPANY NAME:	SCS Field	d Servi	ces - Harri	sbu	rg IN	VOICE TO	: Same				PROJ	ECT NAM	1E/Quote#	: Bristo	d		1	
CC	ONTACT:					IN	VOICE CC	NTACT:		lu"		SITE	NAME:	Bristol					
ΑD	DRESS:					IN	VOICE AD	DRESS:				PROJ	ECT NUM	BER:					
PH	HONE #:					IN	VOICE PH	ONE #:				P.O. #		98					
FA	X #:			EM	/AIL	: 11		1		W		Pretre	atment Pi	rogram:				1	
ls :	sample for comp	liance rep	orting?	YES NO	1	Regulate	ory State:	VA Is	sample fro	m a chlorii	nated supp	oly?	YES (NO PV	VS I.D. #:		191		
SA	MPLER NAME	(PRINT):	Zyan	Seymon	4	SA	MPLER S	IGNATUR	E: Rjav	V Su	maes	Tur n 7	Around T	ime: Circ	de: 10 <i>(</i>	5 Days)	or .	Day
Mat	rix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/\	ent Gas OT	=Other_ <i>D</i> /		/	0			06	3-221-0016	3				1
	=	Regulator	Info	Canister Ir	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inform	nation		Codes)	ANA	ALYSI
	CLIENT	*					LAB	LAB	Barometric	Pres. (in Ho	i -	r	Barometri	c Pres. (in H	1	1	ee Coc	8	
	SAMPLE I.D.	Flow Controller ID	Cal Flow	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time	Initial Canister Vacuum (in	Starting Sample Temp °F	Stop Date	Stop Time	Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (See	Alt 145 C	
1)	37	LAN	MB			220412-07	20	9.2	10/12/22	14:20	18	151	10/12	14:29	3		LG		
2)	67	Res	Sold Sold Sold Sold Sold Sold Sold Sold	9205	1.4	220901-01	20	4.2	10/12/22	13'-58	0	159	10/11/20	14:00	0	159	LG	x	
3)	57	-		10224	1.4	220919-02	20	this i	well is	183 consi	degra		spewi. didn	D .	m and t to		LG	x	
4)	67			11317	1.4	220728-01	20	Suck	10/14/22	in a	y 90	m.					LG	x	
					7//	<u> </u>						o Se		le	20.2	31	0		50
REL	INQUISHED:				REC	CEIVED:	ov ava		TE / TIME	QC Data P		B USE	ONLY				2	• TO	0/5
F	QUISHED:		DA	E / TIME	REC	CEIVED:	exarc		TE / TIME	Level I					d Servi	ces	2.	ZJU	865
Page F	Ge o	exaro	vno			40	10/1	8/22	10.28	Level II				Bristol					
F o	IQUISHED:)	DA	TE / TIME	REC	CEIVED:		DAT	TE / TIME	Level III			F	Recd: 10/	18/2022	Due:	10/		
¤ q =					<u> </u>					Level IV								v130	325002
=	-			41.0		Carra 0	۱. ۱.			1 1	V								

The state of the s

AIR ANALYSIS CHAIN OF CUSTODY

Fauinment due 10/31

								CHAIN	01 003	IODI		Juipii	ent du	5 10/51					
СО	MPANY NAME:	SCS Field	d Servi	ces - Harri	sbu	rg IN\	OICE TO	Same		\$		PROJ	ECT NAM	/IE/Quote#	#: Bristo	ı			
СО	NTACT:				Th	IN	OICE CO	NTACT:		13/-		SITE	NAME:						
AD	DRESS:					INV	OICE AD	DRESS:		100		PROJ	ECT NU	MBER:					1
PH	ONE #:					INV	OICE PH	ONE #:		3		P.O. #	:						
FA	X #:			EM	1AIL	å		4		W		Pretre	atment P	rogram:					
ls s	sample for comp	liance repo	orting?	YES NO		Regulate	ory State:	ls :	sample fro	m a chlorir	nated supp	oly?	YES	NO PV	VS I.D. #:				
SA	MPLER NAME	(PRINT):				SA	MPLER S	IGNATUR	E:			Turn	Around 1	Time: Circ	cle: 10	5 Days		or _	_ Day
Matr	rix Codes: AA=Indoo	r/Ambient Air	SG=Soil	Gas LV=Land	dfill/V	ent Gas OT	=Other						06	3-221-0016	6				
		Regulator	nfo	Canister In	forn	nation			Sampling S	Start Inform	ation		Sampling	Stop Inforn	nation		des)	ANA	LYSI
	CLIENT						LAB	LAB	Barometric	Pres. (in Ho	j):		Barometr	ic Pres. (in H			oo ee	o l	
	SAMPLE I.D.	Flow Controller ID	Cal Flow (mL/min)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister Vacuum (in Hg)	Start Date	Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp °F	Stop Date		Final Canister Vacuum (in Hg)	Ending Sample Temp °F	Matrix (See Codes)	Alt 145 CO	
1)				12408	1.4	220919-02	20										LG	x	
2)				12411	1.4	220919-02	20						v			a .	LG	x	
3)																			
4)																			
	MOUIOUES				Inco	SEIVES.		D. 1	E / TIME	00 0-4- 0		See		10	20.2	3/0)		
_ا		dex		E / TIME	REC	CEIVED:	0/18/72	DAT 2 102	TE / TIME	Level II Level III Level IV	Cackage LA	R OSE		Bristol	eld Serv /18/2022			/25/	0865 2022

Certificate of Analysis

Final Report

Laboratory Order ID 22J0865

Client Name: SCS Field Services - Harrisburg, PA Date Received:

4330 Lewis Road, Suite 1 Date Issued: October 21, 2022 14:15

October 18, 2022 10:28

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number: [none]

Client Site I.D.: Bristol Purchase Order:

Sample Conditions Checklist

Samples Received at:	20.20°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA Date Received: October 21, 2022 10:25

4330 Lewis Road, Suite 1 Date Issued: October 28, 2022 15:13

Harrisburg, PA 17111 Project Number: [none]

Submitted To: Tom Lock Purchase Order:

Client Site I.D.: Bristol

100001415

Enclosed are the results of analyses for samples received by the laboratory on 10/21/2022 10:25. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Soyars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. Analyses for pH, dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received: October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued: October 28, 2022 15:13

Harrisburg, PA 17111

Project Number: [none]

Submitted To:

Tom Lock

Purchase Order:

Client Site I.D.: Bristol

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
57	22J1080-01	Air	10/19/2022 11:15	10/21/2022 10:25
37	22J1080-02	Air	10/19/2022 11:00	10/21/2022 10:25

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Harrisburg, PA 17111

Date Received: Date Issued:

October 21, 2022 10:25 October 28, 2022 15:13

4330 Lewis Road, Suite 1

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.:

Bristol

Purchase Order:

ANALYTICAL RESULTS

Project Location:

Field Sample #: 57

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00373: 13954

Initial Vacuum(in Hg): 30 Final Vacuum(in Hg): 6.6

Sample ID: 22J1080-01

Receipt Vacuum(in Hg): 6.6 Flow Controller Type: passive

Sample Matrix: Air

Canister Size: 1.4

Flow Controller ID:

Sampled: 10/19/2022 11:15

Sample Type: LG

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

		ppmv		ALT-145	steu, as received basis		Date/Time	
Analyte	Result	MDL	LOQ	Flag/Qual	Dilution	PF	Analyzed	Analyst
Carbon Monoxide, as received	102	90.0	90.0		9	1	10/24/22 9:24	DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received: 4330 Lewis Road, Suite 1

Date Issued:

October 21, 2022 10:25

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock Project Number:

[none]

Client Site I.D.: **Bristol** Purchase Order:

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 22J1080-02 Sample Matrix: Air

Sampled: 10/19/2022 11:00

Sample Type: LG

Sample Description/Location: Sub Description/Location:

Canister ID: 063-00372: 13957

Canister Size: 1.4

Initial Vacuum(in Hg): 30

Final Vacuum(in Hg): 7.8

Receipt Vacuum(in Hg): 7.8 Flow Controller Type: passive

Flow Controller ID:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis ALT-145 ppmv Date/Time Analyte Result MDL LOQ Flag/Qual Dilution PF Analyzed Analyst 94.9 9 Carbon Monoxide, as received 90.0 90.0 1 10/24/22 10:17 DFH

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Analytical Summary

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID
Volatile Organic Compo	unds by GC/TCD - Unadjusted, as	received basis	Preparation Method:	No Prep VOC GC Air	
22J1080-01	1.00 mL / 1.00 mL	ALT-145	BFJ0870	SFJ0832	AG00026
22J1080-02	1.00 mL / 1.00 mL	ALT-145	BFJ0870	SFJ0832	AG00026

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control Enthalpy Analytical

	R	Reporting			Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual		
Batch BFJ0870 - No Prep VO	C GC Air											
Blank (BFJ0870-BLK1)					Prep	ared &	Analyzed	: 10/24/20)22			
Carbon Monoxide	<	10.0	ppmv									
LCS (BFJ0870-BS1)		Prepared & Analyzed: 10/24/2022										
Methane	4490	500	ppmv	5000		89.8	0-200					
Carbon dioxide	4110	500	ppmv	5000		82.3	0-200					
Oxygen (O2)	5520	500	ppmv	5000		110	0-200					
Nitrogen (N2)	6690	2000	ppmv	5000		134	0-200					
Hydrogen (H2)	5790	200	ppmv	5100		113	0-200					
Carbon Monoxide	4820	10	ppmv	5000		96.3	0-200					
Duplicate (BFJ0870-DUP1)		Soi	urce: 22J	1080-01	Prepared & Analyzed: 10/24/2022							
Methane	412000	4500	ppmv		41200	00		0.0289	25			
Carbon dioxide	408000	4500	ppmv		40700	0		0.277	25			
Oxygen (O2)	20700	4500	ppmv		2070	0		0.0361	25	С		
Nitrogen (N2)	81500	18000	ppmv		8110)		0.426	25			
Hydrogen (H2)	22200	1800	ppmv		2230	0		0.0724	25			
Carbon Monoxide	105	90.0	ppmv		102			3.05	25			
Duplicate (BFJ0870-DUP2)		Soi	urce: 22J	1080-02	Prepared & Analyzed: 10/24/2022							
Methane	149000	4500	ppmv		14900	0		0.0974	25			
Carbon dioxide	229000	4500	ppmv		22900	0		0.293	25			
Oxygen (O2)	73200	4500	ppmv		7310	0		0.120	25	С		
Hydrogen (H2)	10200	1800	ppmv		1010	0		0.769	25			
Nitrogen (N2)	431000	18000	ppmv		43000	00		0.125	25			
Carbon Monoxide	97.0	90.0	ppmv		94.9			2.25	25			
Duplicate (BFJ0870-DUP3)		Soi	urce: 22J	1078-01	Prepared & Analyzed: 10/24/2022							
Methane	324000	4500	ppmv		32500	0		0.413	25			
Carbon dioxide	268000	4500	ppmv		26900	0		0.419	25			
Oxygen (O2)	10900	4500	ppmv		11100)		1.79	25	С		
Nitrogen (N2)	322000	18000	ppmv		32300	0		0.549	25			
Hydrogen (H2)	<	1800	ppmv		<180	0		NA	25			
Carbon Monoxide	<	90.0	ppmv		<90.0)		NA	25			

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BFJ0870 - No Prep VO	C GC Air									
Ouplicate (BFJ0870-DUP4)		Sou	ırce: 22J	1089-01	Prep	ared & /	Analyzed	: 10/24/20)22	
Methane	276000	4500	ppmv		27500	00		0.425	25	
Carbon dioxide	492000	4500	ppmv		49100	00		0.156	25	
Oxygen (O2)	<	4500	ppmv		<450	0		NA	25	С
Hydrogen (H2)	124000	1800	ppmv		12400	00		0.0336	25	
Nitrogen (N2)	69000	18000	ppmv		6890	0		0.0724	25	
Carbon Monoxide	647	90.0	ppmv		636			1.71	25	
Ouplicate (BFJ0870-DUP5)		Sou	ırce: 22J	1089-02	Prep	ared & /	Analyzed	: 10/24/20)22	
Methane	312000	4500	ppmv		30900	00		0.742	25	
Carbon dioxide	494000	4500	ppmv		48900	00		0.982	25	
Oxygen (O2)	19800	4500	ppmv		1970	0		0.433	25	С
Hydrogen (H2)	46300	1800	ppmv		4600	0		0.745	25	
Nitrogen (N2)	72200	18000	ppmv		7200	0		0.355	25	
Carbon Monoxide	371	90.0	ppmv		367			1.05	25	
Duplicate (BFJ0870-DUP6)		Sou	urce: 22J	1089-03	Prepared & Analyzed: 10/24/2022					
Methane	64600	4500	ppmv		6480	0		0.259	25	
Carbon dioxide	631000	4500	ppmv		63100	00		0.0692	25	
Oxygen (O2)	13900	4500	ppmv		1410	0		1.73	25	С
Hydrogen (H2)	182000	1800	ppmv		18200	00		0.212	25	
Nitrogen (N2)	52400	18000	ppmv		5330	0		1.80	25	
Carbon Monoxide	1430	90.0	ppmv		1430)		0.196	25	
Duplicate (BFJ0870-DUP7)		Sou	urce: 22J	1307-01	Prep	pared: 10)/24/2022	2 Analyze	d: 10/27/202	22
Methane	265000	9000	ppmv		26500	00		0.114	25	
Carbon dioxide	463000	9000	ppmv		46100	00		0.335	25	
Oxygen (O2)	<	9000	ppmv		<900	0		NA	25	
Hydrogen (H2)	107000	3600	ppmv		10700	00		0.0419	25	
Nitrogen (N2)	49500	36000	ppmv		5000	0		1.06	25	
Carbon Monoxide	559	180	ppmv		565			0.992	25	

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Reporting

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

RPD

Client Site I.D.: Bristol

Purchase Order:

%REC

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

Source

Spike

207000 549000 < 61200	9000 9000 9000	urce: 22J	1307-02	Prep	pared: 10	1/24/2022) Analyzada	40/07/0000	
549000 < 61200	9000 9000		1307-02	Prep	ared: 10	1/2//2022) Analyzad	40/07/0000	
549000 < 61200	9000	ppmv			arcu. 10	112412022	z Analyzed:	: 10/27/2022	
< 61200				20400	00		1.66	25	
61200	9000	ppmv		54200	00		1.27	25	
	2300	ppmv		<900	0		NA	25	
	36000	ppmv		6010	0		1.83	25	
71400	3600	ppmv		7010	0		1.91	25	
de 338 180 ppmv				<180)		NA	25	
Duplicate (BFJ0870-DUP9)					ared: 10				
179000	9000	ppmv		17600	00		1.42	25	
332000	9000	ppmv		33100	00		0.378	25	
63600	9000	ppmv		6310	0		0.683	25	
231000	36000	ppmv		22900	00		0.869	25	
61200	3600	ppmv		6060	0		0.931	25	
523	180	ppmv		514			1.77	25	
	Soi	urce: 22J	1332-01	Prep	ared: 10)/24/2022	2 Analyzed:	: 10/28/2022	
311000	4500	ppmv		30900	00		0.793	25	
308000	4500	ppmv		30500	00		0.760	25	
58900	4500	ppmv		5890	0		0.000610	25	
	1800	ppmv		0000	_				
23100	.500	PP		2330	0		1.16	25	
	332000 63600 231000 61200 523 311000 308000 58900	179000 9000 332000 9000 63600 9000 231000 36000 61200 3600 523 180 Sol 311000 4500 308000 4500 58900 4500	179000 9000 ppmv 332000 9000 ppmv 63600 9000 ppmv 231000 36000 ppmv 61200 3600 ppmv 523 180 ppmv Source: 22J 311000 4500 ppmv 308000 4500 ppmv 58900 4500 ppmv	332000 9000 ppmv 63600 9000 ppmv 231000 36000 ppmv 61200 3600 ppmv 523 180 ppmv Source: 22J1332-01 311000 4500 ppmv 308000 4500 ppmv 58900 4500 ppmv	179000 9000 ppmv 17600 332000 9000 ppmv 33100 63600 9000 ppmv 6310 231000 36000 ppmv 22900 61200 3600 ppmv 6060 523 180 ppmv 514 Source: 22J1332-01 Prep 311000 4500 ppmv 30900 308000 4500 ppmv 30500 58900 4500 ppmv 5890	179000 9000 ppmv 176000 332000 9000 ppmv 331000 63600 9000 ppmv 63100 231000 36000 ppmv 229000 61200 3600 ppmv 60600 523 180 ppmv 514 Source: 22J1332-01 Prepared: 10 311000 4500 ppmv 309000 308000 4500 ppmv 58900 58900 4500 ppmv 58900	179000 9000 ppmv 176000 332000 9000 ppmv 331000 63600 9000 ppmv 63100 231000 36000 ppmv 229000 61200 3600 ppmv 60600 523 180 ppmv 514 Source: 22J1332-01 Prepared: 10/24/2022 311000 4500 ppmv 309000 308000 4500 ppmv 58900	179000 9000 ppmv 176000 1.42 332000 9000 ppmv 331000 0.378 63600 9000 ppmv 63100 0.683 231000 36000 ppmv 229000 0.869 61200 3600 ppmv 60600 0.931 523 180 ppmv 514 1.77 Source: 22J1332-01 Prepared: 10/24/2022 Analyzed: 311000 4500 ppmv 309000 0.793 308000 4500 ppmv 305000 0.760	179000 9000 ppmv 176000 1.42 25 332000 9000 ppmv 331000 0.378 25 63600 9000 ppmv 63100 0.683 25 231000 36000 ppmv 229000 0.869 25 61200 3600 ppmv 60600 0.931 25 523 180 ppmv 514 1.77 25 Source: 22J1332-01 Prepared: 10/24/2022 Analyzed: 10/28/2022 311000 4500 ppmv 309000 0.793 25 308000 4500 ppmv 305000 0.760 25 58900 4500 ppmv 58900 0.000610 25

Certified Analytes included in this Report

129

90.0

ppmv

Carbon Monoxide

Anal	yte	Certifications	Analyte	Certifications
------	-----	----------------	---------	----------------

120

6.80

25

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2022
NCDEQ	North Carolina DEQ	495	12/31/2022
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #007	68-03503	10/31/2022
VELAP	NELAP-Virginia Certificate #12098	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2022

Qualifiers and Definitions

C Continuing calibration verification response for this analyte is outside specifications.

RPD Relative Percent Difference

Qualifers

TIC

-RE Denotes sample was re-analyzed

PF Preparation Factor

MDL Method Detection Limit

LOQ Limit of Quantitation

ppbv parts per billion by volume

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside \pm 10% of the absolute.

formerly Air, Water & Soil Laboratories

AIR ANALYSIS CHAIN OF CUSTODY

10/30/22 Equipment due-9/36/22

COMPANY NAME: SCS Field Services - Harrisburg INVOICE TO: Same PROJECT NAME/Quote #: 8-15 4-6\																					
CO	NTACT: M	ike Byk					IN	OICE CO	NTACT	:				SITE	SITE NAME: Bristo						
AD	ADDRESS: INVOICE ADDRESS:												PROJECT NUMBER:								
PH	PHONE #: INVOICE PHONE #:												P.O. #:								
FAX #: Pretreatment Program:																					
Is sample for compliance reporting? YES NO Regulatory State: Is sample from a chlorinated supply? YES NO PWS I.D. #:																					
SAMPLER NAME (PRINT): RYAN Seymon SAMPLER SIGNATURE: Ayan Summer Turn Around Time: Circle: 10 5 Days or _												Day									
Matrix Codes: AA=Indoor/Ambient Air SG=Soil Gas LV=Landfill/Vent Gas OT=Other LY 063-22I-0009																					
		Regu	ılator	Info	Canister In	form	nation			Samp	ling S	Start Inform	ation		Sampling	Stop Inform	nation		es)	AN/	ALYSI
	CLIENT							LAB	LAB		etric	Pres. (in Ho	9):		Barometric	Pres. (in H			e Codes)	8	
١	SAMPLE I.D). FI	ow	Cal		(E)		Outgoing Canister	Receivir Caniste	- 1			Initial Canister		!	1	Final Canister		X (See	25	ļ
			troller D	Flow	Canister ID	Į.	Cleaning Batch ID	Vacuum (in	Vacuum Hg)	(in Start i	Data	Start Time (24hr clock)	Vacuum (in Sample	Stop Date	Stop Time	Vacuum (in	Ending Sample	Matrix (14	
1)	57	N	BI		13954	1.4	220902-01	30	29	10/19			29	152°	19/9/22	11:15	-2	тетр ' F	LG		+-
L									(6)	9						AM	•				
2)	37	N	8	ΟX	13957	1.4	220902-01	30	29	10/19	hr	10:59 Am	-29	149°	10/19/22	11:00 Am	-2	149°	LG	x	
3)					13964	1.4	220902-01	30											LG	х	
4)					13967	1.4	220902-01	30											LG	x	
REI	INQUISHED:					IDEC	SEIVED.			DATE / TIL	45	<u>ろ(</u>		٠ د ر		، او	nes	ان م	ĺ		
匚	1					١٨٥٥	EIVED:)ekg,	···	DATE / TIM	/IE	QC Data F	Package L	AB USE	ONLY					_	
Page	INQUISHED:	dex	- 2	DA	TE / TIME	REC	EIVED:	10/2	127	DATE / TIN	AE.	Level II	<u> </u>		SCS F	ield Ser	vices	22J1	08	U	
ge 10 of 1	INQUISHED:			DA	TE / TIME	REC	CEIVED:	1010	1	DATE / TIN		Level III		22J108	Deistal		22 Due:	10/28/	202	22	
ጟ	· · · · · · · · · · · · · · · · · · ·					-						FEAGUA		 \$	7700			۷1	30325	W4	

PHONE #: INVOICE									NVOICE PHONE #: P.O. #:								
FA	X #:			EM	AIL	:						Pretre	atment Pr	ogram:			
ls s	sample for comp	oliance rep	orting?	YES NO		Regulato	ory State:	ls	sample fr	om a chlori	nated supp	ply?	YES N	NO P			
SA	MPLER NAME	(PRINT):				SA	MPLER S	IGNATU	RE:			Turn /	Around T	ime: Ci			
Matr	rix Codes: AA=Indoo	or/Ambient Air	SG=Soil	Gas LV=Land	ifill/V	ent Gas OT	=Other						06	3-221-000			
		Regulator	Info	Canister In	forn	nation			Sampling	Start Inform	ation	Sampling Stop Inform					
							LAB	LAB	Barometr	c Pres. (in H	g):		Barometri	c Pres. (in			
	CLIENT SAMPLE I.D.	Flow Controller ID	Cal Flow (mUmin)	Canister ID	Size (L)	Cleaning Batch ID	Outgoing Canister Vacuum (in Hg)	Receiving Canister		Start Time (24hr clock)	Initial Canister Vacuum (in Hg)	Starting Sample Temp *F	Stop Date	Stop Time (24hr clock)			
1)				13969	1.4	220902-01	30										
2)				13971	1.4	220902-01	30										
3)							30										
4)							30										
												310		3 70			
REL	INQUISHED:				REC	CEIVED:	& gra	0 (ن م ن ت	ATE / TIME	QC Data I	Package L	4B USE	E ONLY				
	g teder around				,	CEIVED:	171/72	1075		Level II							
11 of	INQUISHED:	J	DAT	TE / TIME	REG	CEIVED:	·	D	ATE / TIME	Level III Level IV		ب	ristoi ecd: 10/2	21/2022			
12	, ., .,		<u></u>									~					

Certificate of Analysis

Final Report

Laboratory Order ID 22J1080

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

October 21, 2022 10:25

4330 Lewis Road, Suite 1

Date Issued:

October 28, 2022 15:13

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

[none]

Client Site I.D.: Bristol

Purchase Order:

Sample Conditions Checklist

Samples Received at:	20.30°C
How were samples received?	FedEx Ground
Were Custody Seals used? If so, were they received intact?	No
Are the custody papers filled out completely and correctly?	Yes
Do all bottle labels agree with custody papers?	Yes
Is the temperature blank or representative sample within acceptable limits or received on ice, and recently taken?	Yes
Are all samples within holding time for requested laboratory tests?	Yes
Is a sufficient amount of sample provided to perform the tests included?	Yes
Are all samples in appropriate containers for the analyses requested?	Yes
Were volatile organic containers received?	No
Are all volatile organic and TOX containers free of headspace?	NA
Is a trip blank provided for each VOC sample set? VOC sample sets include EPA8011, EPA504, EPA8260, EPA624, EPA8015 GRO, EPA8021, EPA524, and RSK-175.	NA
Are all samples received appropriately preserved? Note that metals containers do not require field preservation but lab preservation may delay analysis.	Yes

Work Order Comments