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 The United States is pursuing a diversified energy portfolio that includes offshore 

wind 

 Offshore wind energy leases may threaten birds making trans-Atlantic migratory 

flights 

 We used satellite transmitters to track whimbrels making trans-Atlantic flights 

 > 40% of flights intersected leases off the coast of Virginia and North Carolina  

 More study is needed to inform placement and operation of offshore wind leases  
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ABSTRACT 2 
 3 

The United States is pursuing a diversified energy portfolio that includes offshore wind with a 4 

focus on the Atlantic Outer Continental Shelf (OCS).  The Western Atlantic Flyway (WAF) 5 

supports one of the largest near-shore movement corridors of birds in the world including several 6 

shorebird species of high conservation concern.  We used satellite transmitters to examine 7 

orientation of whimbrels crossing the OCS and their overlap with two wind energy leases.  Birds 8 

using a migratory staging site along the Delmarva Peninsula in Virginia crossed the OCS along a 9 

southeast-northeast axis.  A considerable number (42.9%) of tracks intersected with one of the 10 

two wind leases.  The juxtaposition to the staging site placed wind leases within both the 11 

departure and arrival trajectories.  Several species of shorebirds including hundreds of thousands 12 

of individuals make trans-Atlantic flights from three major staging sites including Delaware Bay, 13 

the lower Delmarva and Georgia Bight.  All of these sites have wind leases positioned to their 14 

southeast.  One of the most effective strategies for minimizing conflicts between birds and 15 

potential hazards is to place hazards away from critical movement corridors.  More information 16 

is needed about departure and arrival patterns of shorebirds that cross the OCS to inform lease 17 

placement. 18 

Key Words — Whimbrel, Numenius phaeopus, satellite tracking, offshore wind, outer 19 

continental shelf, Western Atlantic Flyway. 20 
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INTRODUCTION 23 

Along with many nations throughout the world, the United States is actively pursuing a 24 

diversified energy portfolio that includes a greater reliance on clean, renewable sources of energy 25 

that may be produced domestically.  Offshore wind represents a significant component of this 26 

renewable energy strategy.  The Atlantic Coast offers abundant wind resources, shallow, near-27 

shore waters in close proximity to large load centers with some of the most lucrative and rapidly 28 

expanding energy markets in the country (Gilman et al. 2016).  Near-shore waters support 29 

enough potential wind energy that if fully exploited could displace the entire land-based 30 

generating capacity of the coastal states from Maine through Maryland (Energy Information 31 

Administration 2004, Musial et al. 2016).  To facilitate the transition to renewable energy 32 

sources, the Bureau of Ocean Energy Management (BOEM) is accelerating access to the Atlantic 33 

Outer Continental Shelf (OCS) for the purpose of developing commercial-scale wind-energy 34 

facilities.  Currently, 7073 km2 of the Atlantic OCS is under lease with an additional 11,235 km2 35 

in the planning phase.  Existing leases are widespread extending along the coast from South 36 

Carolina north to Massachusetts (BOEM 2021).  To date, development of offshore wind along 37 

the Atlantic Coast is limited to a 30-megawatt demonstration facility in state waters along Rhode 38 

Island and a 12-megawatt pilot project within the Atlantic OCS along Virginia. 39 

 40 

The Western Atlantic Flyway (WAF) supports one of the largest near-shore movement corridors 41 

of birds in the world supporting hundreds of millions of individuals annually including 164 42 

species of waterbirds, many of which are of conservation concern (Watts 2010, Robinson 43 

Willmott et al. 2013).  Waterbird populations using the flyway are drawn from breeding ranges 44 

across much of North America, funnel along the coast in a thin veneer over near-shore waters 45 



and then fan out again to broadly dispersed winter ranges.  In addition to serving as a movement 46 

corridor, portions of the Atlantic Coast serve as strategic staging sites where waterbirds stop for 47 

extended periods to rest and refuel before continuing their migration (e.g., Atkinson et al. 2007, 48 

Spiegel et al. 2017).  Among the most prominent groups of waterbirds using the WAF are 49 

shorebirds.  Of the 35 shorebird populations with trend data that regularly utilize the WAF, 65% 50 

are declining whereas 11% are increasing (Andres et al. 2012).  Due to their low reproductive 51 

potential, many shorebirds are vulnerable to increased adult mortality (Watts et al. 2015).   52 

 53 

Whimbrels (Numenius phaeopus) are large shorebirds that use the WAF during both spring and 54 

fall migration (Skeel and Mallory 2020, Johnson et al. 2016).  Surveys within a spring staging 55 

site (Watts and Truitt 2011) and within the primary winter grounds (Morrison et al. 2012) 56 

indicate that whimbrels using the WAF have experienced significant declines over the past three 57 

decades.  Whimbrels exhibit delayed recruitment and have low reproductive potential (Watts et 58 

al. 2015).  A recent assessment suggests that adult mortality rates are elevated above sustainable 59 

levels and are likely contributing to ongoing declines (Watts et al. 2019).  As a consequence of 60 

these patterns and relatively small population sizes, whimbrels have been assigned high 61 

conservation scores by both the United States and Canadian shorebird conservation plans 62 

(Donaldson et al. 2000, Brown et al. 2001). 63 

 64 

The construction of any structure within the airspace represents a potential hazard to birds 65 

(Erickson et al. 2005).  At the population level, probability of impact from a specific hazard is 66 

determined by two independent factors including vulnerability and exposure.  Population 67 

vulnerability is the susceptibility of a population to perturbations in vital demographic rates or in 68 



the case of hazards the ability of a population to absorb hazard-related mortality.  Population 69 

exposure to a hazard is the extent to which the population is expected to interact with and be 70 

impacted by the hazard.  In the case of wind turbines, this includes the extent to which the 71 

population spatially overlaps with the hazard and the conditional probability that if it overlaps 72 

with the hazard that it will be impacted by the hazard.  If a population has no spatial overlap with 73 

the hazard, then the likelihood of impact is expected to be zero.  One of the most effective means 74 

of minimizing the impacts of hazards on bird populations is to locate structures away from major 75 

activity centers. 76 

 77 

Because the greatest volume of the shorebird migration within the WAF is believed to occur 78 

close to the coast (Loring et al. 2020), populations are expected to have relatively little exposure 79 

to wind leases located within the Atlantic OCS (5-320 km offshore).  An exception to this pattern 80 

may be around major staging sites where birds initiate or end transoceanic flights that cross 81 

waters of the Atlantic OCS on their way to or from winter grounds within the Caribbean Basin or 82 

South America.  Well-known shorebird staging sites occur along the Atlantic Coast including 83 

Delaware Bay (Clark et al. 1993), the Delmarva Peninsula (Watts and Truitt 2001, 2011, 2014) 84 

and the Georgia Bite (Wallover et al. 2015, Lyons et al. 2018).  Birds departing from or arriving 85 

to these staging sites are known to cross waters of the Atlantic OCS (Burger et al. 2012, Loring 86 

et al. 2020, Watts et al. 2021).  Each of these sites has associated wind leases located within the 87 

Atlantic OCS.  However, we know very little about the departure and arrival pathways and the 88 

extent to which these birds may be exposed to future wind-energy development within existing 89 

leases.  Here, we use satellite transmitters to track whimbrels flying across the OCS as they 90 



depart from and arrive to a migratory staging site to evaluate their flight trajectory and potential 91 

exposure to two wind energy leases.  92 

 93 

METHODS 94 

Study Area 95 

This study was conducted within a major spring and fall staging site for whimbrels along the 96 

seaward margin of the lower Delmarva Peninsula in Virginia (Watts and Truitt 2011) and 97 

included two BOEM wind energy lease sites within the Atlantic OCS.  The lower Delmarva 98 

supports thousands to tens of thousands of whimbrels during both the spring and fall migration 99 

periods.  Whimbrels stage within the site for approximately 4 weeks before initiating the next leg 100 

of migration (Watts et al., unpublished).  In addition to whimbrels, the staging area supports 101 

several other shorebird species of conservation concern during migratory periods (Watts and 102 

Truitt 2001, 2011, 2014) and has been designated as a UNESCO Biosphere Reserve 103 

(http://www.unesco.org), a Western Hemisphere Shorebird Reserve Site with international status 104 

(http://www.whsrn.org), is the site of a National Science Foundation Long-term Ecological 105 

Research site (http://amazon.evsc.virginia.edu) and the focus of a multi-organizational 106 

partnership dedicated to bird conservation.  107 

 108 

The two BOEM leases include a site offshore of Virginia Beach, VA (centered on 36°905ʹ N, 109 

75°365ʹ W) and a site offshore of Kitty Hawk, NC (centered on 36°338ʹ N, 75°129ʹ W).  The 110 

Coastal Virginia Offshore Wind Project (OCS-A-0497) covers 45,649 ha and is positioned 37.9 111 

km (closest point) east of the shoreline in the OCS.  The site is leased by the Commonwealth of 112 

Virginia’s Department of Mines Minerals and Energy and is operated by Dominion Energy.  113 

Two test turbines were installed within this site in 2020.  The Kitty Hawk Offshore Wind Project 114 



(OCS-A-0508) covers 49,537 ha and is positioned 38.7 km (closest point) east of the shoreline in 115 

federal waters.  The site is leased to Avangrid Renewables, LLC.  To date, no turbines have been 116 

constructed within this site. 117 

 118 

Field Methods 119 

We captured 10 Whimbrels between 2008 and 2012 on migratory staging sites along the lower 120 

Delmarva Peninsula in Virginia, USA (n = 9) (37.398° N, 75.865° W) and along the coast of 121 

Georgia, USA (n = 1) (31.148° N, 81.379° W). We selected these birds for inclusion in this study 122 

because they staged on the lower Delmarva Peninsula during autumn and/or spring.  All birds 123 

were aged as adults by plumage (Prater et al. 1977, Pyle 2008) and were banded with United 124 

States Geological Survey tarsal bands and coded leg flags. Sex of captured birds was not 125 

determined. 126 

 127 

We fitted all birds with satellite transmitters called Platform Transmitter Terminals (PTTs) using 128 

a modification of the leg-loop harness (Rappole and Tipton 1991, Sanzenbacher et al. 2000). 129 

Instead of elastic cord, we used Teflon® ribbon (Bally Ribbon Mills, Bally, Pennsylvania, USA) 130 

that was fastened with brass rivets or crimps (Watts et al. 2008). We glued transmitters to a 131 

larger square of neoprene to elevate it above the body and prevent the bird from preening 132 

feathers over the solar panels. The transmitter package was below 3% of body mass (measured at 133 

the time of deployment (𝑥̅ = 563.9 ± 20.6) for all individuals tracked in this study. The PTTs used 134 

in this study were 9.5 g PTT-100 solar-powered units produced by Microwave Telemetry, Inc. 135 

(Columbia, Maryland, USA). 136 

Tracking 137 



Birds were located using satellites of the National Oceanic and Atmospheric Administration and 138 

the European Organization for the Exploitation of Meteorological Satellites with onboard 139 

tracking equipment operated by Collecte Localisation Satellites (CLS America, Inc., Largo, 140 

Maryland, USA)(Fancy et al. 1998). Transmitters were programmed to operate with a duty cycle 141 

of 24 h off and 5 h on (n = 9) or 48 h off and 10 h on (n = 1) and collected 1–34 (𝑥̅ = 5.48 ± 0.07) 142 

locations per cycle. Locations in latitude and longitude decimal degrees, date, time, and location 143 

error were received from CLS America within 24 h of satellite contact with PTTs. Locations 144 

were estimated by the Advanced Research and Global Observation Satellite (ARGOS) system 145 

(www.Argos-system.org), which uses a Doppler shift in signal frequency and calculates a 146 

probability distribution within which the estimate lies. The standard deviation of this distribution 147 

gives an estimate of the location accuracy and assigns it to a “location class” (LC): 148 

LC3 =  < 150 m, LC2 = 150–350 m, LC1 = 350–1000 m, LC0 > 1000 m, LCA = location based 149 

on 3 messages and has no accuracy estimate, LCB = location based on 2 messages and has no 150 

accuracy estimate, and LCZ = location process failed. We used LC classes 1–3 to determine the 151 

last whimbrel locations before and after flights to and from the Delmarva Peninsula. 152 

 153 

Departure and Arrival 154 

We estimated the seasonality of potential exposure to lease areas using departure and arrival 155 

dates from and to the lower Delmarva staging site respectively.  We used tracking data to 156 

determine the dates of departure and arrival.  We consider departure or the onset of migration to 157 

be when birds made decisive movements away from the site.  In order to identify these breakout 158 

movements, we used staging locations to develop centroids and consider the first departure 159 

movement to be the first location that exceeded 2 standard deviation units beyond the mean of 160 

http://www.argos-system.org/


movements around centroids.  We consider the dates of breakout movements to be the dates of 161 

departure.  We consider arrival to be the dates of first locations within the site.  In cases where 162 

departure and arrival times occurred outside the transmitter’s duty cycle, we calculated the speed 163 

between the arrival or departure location and the last or next flight location. If the speed was less 164 

than 2 SD below the mean whimbrel flight speed (𝑥̅ = 14.7 ± 0.3 m/s, n = 45; Watts et al. 2021), 165 

we interpolated arrival and departure times using the mean whimbrel flight speed and great circle 166 

distance between the two points.  Departure and arrival were both abrupt and we recorded no 167 

“false starts or ends” to migratory movements. 168 

 169 

We delineated departure and arrival areas within the staging site.  We considered the last location 170 

prior to departure and first location after arrival to represent locations of departure and arrival.     171 

We mapped all departure and arrival locations using a kernel density estimator (KDE) method 172 

(Worton 1995) with the “ks” package (Duoung 2007) in program R (R Core Team 2020). We 173 

used the normal (or Gaussian) kernel and a smooth cross-validation bandwidth selector (Duoung 174 

and Hazelton 2005) to map 50% kernel densities.  We considered the 50% KDE to be the area of 175 

highest departure and arrival activity.  We estimated the centroid of KDE polygons for departure 176 

and arrival using the package ‘geosphere’ (Hijmans et al. 2017) in Program R (R Core Team 177 

2020).  178 

 179 

We used tracking data to delineate migratory pathways to and from the Delmarva Peninsula. We 180 

considered pathways to include the route traveled between the location of departure or arrival 181 

and the arrival or departure location on the winter grounds.  Due to the duty cycle of the 182 

transmitters our dataset had temporal gaps in coverage.  We filled these gaps using continuous-183 



time correlated random walk (CRAWL) models (Johnson et al. 2008, Johnson and London 2018) 184 

in Program R (R Core Team 2020) that allowed us to interpolate a pathway for each individual.  185 

We used the segment of the migratory pathway for each individual that extended from the 186 

departure or arrival location to the first point east of wind leases to determine the direction 187 

(degrees) of travel for birds departing from or arriving to the staging site.  We also determined 188 

the angle of juxtaposition between departure and arrival areas and wind leases by estimating the 189 

bearing between KDE polygon centroids and centroids of wind leases.  All bearings were 190 

determined in ArcGIS Desktop 10.7.1 (Environmental Systems Research Institute, Inc. 1999-191 

2010).   192 

 193 

Exposure to BOEM Leases 194 

We examined individual and population-level exposure of whimbrels to BOEM wind leases 195 

using tracking data.  We overlaid individual tracks on polygons of both lease sites to determine 196 

the frequency of overflights during both autumn and spring migrations.  We considered tracks to 197 

have overflown a lease if the track overlapped any portion of the lease.  We used an estimate of 198 

the mean trajectory of birds leaving from and arriving to the staging site to project population-199 

level overflight of the wind leases.  We projected mean flight lines (±SE) from stopover 200 

centroids.  We overlaid flight lines on polygons of wind leases and estimated the proportion 201 

(estimated % of population) of birds that would overfly the polygons based on the level of 202 

overlap.   203 

 204 

Statistics 205 

 206 



We developed descriptive statistics including means and standard errors for departure and arrival 207 

dates and directions of travel.  We tested for patterns in directionality of departure and arrival 208 

using Rayleigh’s Uniformity Test (Berens 2009).  We compared orientation of autumn departure 209 

and spring arrival using Welches t-test to accommodate unequal sample sizes. 210 

 211 

RESULTS 212 

Whimbrel departure and arrival positions were located within the lagoon system of the lower 213 

Delmarva Peninsula and were generally consistent between autumn and spring seasons (Figure 214 

1).  Birds departed the staging site in autumn moving along a southeast bearing (Figure 2a) and 215 

exhibited significant directionality (mean bearing =144±7.9°, r-bar = 0.88, p < 0.001).  Birds 216 

arrived on the staging site moving along a northwest bearing (Figure 2b) and also exhibited 217 

significant directionality (mean bearing =342±10.9° - back azimuth = 162±10.9°, r-bar = 0.91, p 218 

= 0.002).  Although the orientation of spring arrival was more north-south compared to fall 219 

departure, the 20° difference was not statistically significant (t = -1.33, df = 11, p = 0.21).  The 220 

juxtaposition of the wind leases and the departure/arrival KDEs are in surprising agreement with 221 

these bearings (Table 1).  Distances between departure/arrival centroids and centroids of wind 222 

leases ranged from 66 to 131 km (Table 1). 223 



 224 
Figure 1.  Boundary maps of Virginia and North Carolina wind leases and autumn departure and 225 

spring arrival KDEs.  Track trajectories depict mean ± SE of autumn departure and spring arrival 226 

bearings.  Tracks were recorded for birds fitted with solar-powered satellite transmitters.  This 227 

figure was produced in ArcGIS 10.7.1 by an author: https://www.esri.com/ 228 

https://www.esri.com/


 229 
Figure 2.  Frequency distribution of orientation (bearings) of whimbrels tracked departing in the 230 

autumn from (2a) and arriving in the spring to (2b) the lower Delmarva staging site.  Bearings in 231 

the spring represent the back-azimuth of travel to better relate the orientation relative to wind 232 

leases. 233 

 234 

 235 

Juxtaposition Orientation  

(°) 

Distance  

(km) 

Overflight 

(% of total) 

    

Autumn departure    

   Virginia lease 140 66.4 40.0 

   North Carolina lease 150 130.6 13.3 

    

Spring arrival    

   Virginia lease 138 67.0 0 

   North Carolina lease 150 130.7 16.7 

Table 1.  Juxtaposition between centroids of autumn departure and spring arrival locations and 236 

the centroids of wind leases off the coast of Virginia and North Carolina.  Autumn departure and 237 

spring arrival reflect locations for whimbrels tracked with satellite transmitters that staged along 238 

the lower Delmarva Peninsula in Virginia. 239 

 240 

We documented whimbrel tracks that intersected with wind leases.  Tracked whimbrels crossed 241 

the Atlantic OCS 21 times including 15 in the autumn and 6 in the spring.  Nine (42.9%) of these 242 

tracks over flew wind leases including 6 over the Virginia lease and 3 over the North Carolina 243 



lease.  There is some evidence that whimbrels departing the staging site (6 of 15 over flew lease) 244 

may have higher exposure to the Virginia wind lease compared to whimbrels arriving (0 of 6 245 

over flew the lease) in the spring (G-statistic = 2.12, df = 1, p = 0.07).  This may be expected 246 

based on the more northerly trajectory in the autumn relative to the position of the two leases.  247 

However, the small sample size limits our ability to resolve possible lease site by season 248 

patterns. 249 

 250 

Whimbrels crossed the Atlantic OCS during relatively narrow time windows in early autumn and 251 

spring.  Birds departed from the lower Delmarva staging site from 23 July through 19 September 252 

(mean = 24 August ± 4 days SE) during autumn migration.  Birds arrived on site from 5 April 253 

through 6 May (mean = 17 April ± 5 days).   254 

 255 

DISCUSSION 256 

Whimbrels using the lower Delmarva staging site followed a consistent direction during 257 

departure and arrival.  This finding is in agreement with numerous other studies that have 258 

examined the orientation of departure or arrival flights of shorebirds using major staging sites 259 

(e.g., Richardson 1979, Piersma et al. 1990, Battley et al. 2012, Tan et al. 2018).  Flight 260 

orientation at departure is generally consistent with what would be expected based on the 261 

destination with some adjustment for wind direction.  During both seasons, whimbrels followed 262 

a southeast-northwest axis with a more easterly component during autumn departure.  This 263 

finding is consistent with the position of the lower Delmarva relative to the primary winter 264 

grounds along the northern Coast of South America and what we know about the orientation of 265 

migratory pathways.  Whimbrels stage along the lower Delmarva in autumn, make a 266 



transoceanic flight to winter grounds along the northern coast of South America, depart the 267 

winter grounds in early spring and make a transoceanic flight back to the lower Delmarva to 268 

stage during the spring (Johnson et al. 2016, Watts et al. 2021).  A generalized southeast 269 

orientation for shorebirds that leave the Atlantic Coast in fall to make transoceanic flights to 270 

winter grounds has been documented for several species (Loring et al. 2020).      271 

 272 

Several authors have emphasized the need to use information on activities and movement of 273 

shorebirds to inform the planning of wind facilities in order to minimize potential impacts 274 

(O”Connell et al. 2011, Burger et al. 2012, Howell et al. 2020).  Of particular interest are 275 

departure and arrival pathways around staging sites where ascent or descent may expose 276 

shorebirds to hazards.  The location of the Virginia and North Carolina wind leases are southeast 277 

of the lower Delmarva staging site and within the flight lines for both departure and arrival.  278 

More than 40% of the tracks that crossed the Atlantic OCS flew over one of the leases 279 

suggesting that birds may have exposure to turbines constructed within the leases.  Due to the 280 

differences in orientation between autumn and spring it appears that birds may have greater 281 

exposure to the Virginia wind lease during departure compared to arrival.  Additional 282 

information is required to evaluate the possible influence of season on risk.  Ninety-five percent 283 

of whimbrels are expected to arrive in spring between 26 March and 12 May and depart in 284 

autumn between 1 August and 17 September. 285 

 286 

Flight altitude is believed to be one of the largest determinants of collision risk for birds crossing 287 

wind facilities (Fox et al. 2006, Fijn et al. 2015).  The satellite transmitters used in this study 288 

were not equipped with altitude sensors due to weight constraints so we do not know if birds 289 



crossed wind leases within the rotor swept zone (RSZ, 25-250 m).  No information is available 290 

on the migration altitudes of whimbrel and how these altitudes may vary with conditions or time 291 

of day.  Piersma et al. (1990) examined climbing rates of eight shorebird species departing from 292 

the Banc d’ Arguin and found whimbrels to have the lowest (0.21 ms-1) climbing rate.  Some 293 

birds had not moved beyond the RSZ by the time they could no longer be observed (1.5 km).  294 

This pattern is consistent with observations of some whimbrel flocks leaving the lower Delmarva 295 

staging site in spring (Watts et al. 2016) that do not rise above the RSZ before flying out of site 296 

(Wilke, unpublished data).  Loring et al. (2020) modeled flight altitudes of shorebirds crossing 297 

the OCS and found that most were above the RSZ although values varied greatly and 24% and 298 

36% were within the RSZ during spring and fall respectively.  Migration altitude is known to be 299 

influenced by several factors including wind direction, precipitation and time of day (e.g., 300 

Eastwood and Rider 1965, Shamoun-Baranes et al. 2006, Lindstrom et al. 2021).  Although 301 

additional work is needed to determine the altitude of whimbrels flying over the Virginia and 302 

North Carolina wind lease sites, variation in flight altitudes observed in shorebirds in general 303 

suggest that some whimbrels are likely crossing through the RSZ. 304 

 305 

The position of the Virginia and North Carolina wind leases southeast of the lower Delmarva 306 

staging site is not unique.  The other two major shorebird staging sites along the south Atlantic 307 

Coast including Delaware Bay and the Georgia Bight also have wind leases positioned to their 308 

southeast.  Collectively these three staging sites support significant portions of entire shorebird 309 

populations of several species that, like whimbrels, make trans-Atlantic flights to and from 310 

winter grounds.  Prominent species supported within these sites that depart and arrive over the 311 

OCS are black-bellied plover (Pluvialis squatarola), semipalmated plover (Charadrius 312 



semipalmatus), lesser yellowlegs (Tringa flavipes), ruddy turnstone (Arenaria interpres), red 313 

knot (Calidris canutus), semipalmated sandpiper (C. pusilla) and short-billed dowitcher 314 

(Limnodromus griseus).  These species likely take similar trajectories as whimbrels during 315 

autumn departure and spring arrival and may have significant exposure to wind leases associated 316 

with these staging sites. 317 

 318 

One of the most effective strategies for mitigating the impact of wind facilities placed within the 319 

OCS is to locate facilities away from bird activity centers.  Although most bird species migrate 320 

along a north-south axis over nearshore waters, some shorebird species that make trans-Atlantic 321 

flights between coastal staging sites and winter grounds cross the OCS.  Such crossings are 322 

concentrated around major staging sites.  For whimbrels using the lower Delmarva site, these 323 

flights have a consistent southeast-northwest orientation that results in overflight of downstream 324 

wind leases.  A similar juxtaposition occurs with wind leases around other coastal staging sites.  325 

Because populations of high conservation concern depend on these sites, consideration should be 326 

given to locating wind leases north or south of these movement corridors.      327 
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