

April 7, 2022

Ms. Wendy Karably
Draper Aden Associates
2206 South Main Street
Blacksburg, Virginia 24060
E-mail: wkarably@daa.com

Subject: Revision 02 - VDEQ Comment Resolution Support - Comments No. 14 through 16

Green Ridge Recycling and Disposal Facility - Part A Permit Application,

Cumberland County, Virginia (Schnabel Reference 21C43009.01)

Dear Ms. Karably:

SCHNABEL ENGINEERING, LLC (Schnabel) is pleased to submit our engineering evaluations in response to VDEQ Comments No. 14, 15 and 16 on the Part A Permit Application (submitted by DAA on January 22, 2020) for the proposed Green Ridge Recycling and Disposal Facility (RDF) site in Cumberland County, Virginia. This study was performed in accordance with our proposal dated July 6, 2021 (Schnabel Reference 21P43039) and approved on July 30, 2021.

PROJECT INFORMATION AND STUDY OBJECTIVE

We understand the project involves a proposed new Municipal Solid Waste (MSW) landfill facility in Cumberland County, Virginia. The project site is a 1177.6 acres undeveloped piece of land. The 225 acres planned disposal unit will be on the southern portion of the property. Miller Lane is to the east of the site and undeveloped areas are on all other directions. The site is generally covered by planted trees, bushes, few wooded patches, and relatively open fields. Several streams and ephemeral channels are present within the project boundary. Significant topographic variations are present at this site with elevations varying from EL 380 on the southern areas to EL 240 near Muddy Creek on the north-west portion of the site.

On January 22, 2020, Draper Aden Associates (DAA) submitted the Part A Permit Application for this project. The site is generally underlain by residual silt, clay and sandy soils. These soils are underlain by Partially Weathered Rock (Saprolite) over auger refusal/bedrock. We understand DAA provided an evaluation of seismic hazards for this project as part of the Part A Permit Application package as Attachment PTA-XXIII. In their evaluation, DAA determined the proposed landfill site falls within the Central Virginia Seismic Zone but is not located within 200 ft of a known geologic fault that demonstrated movement within the Holocene epoch. The Peak Horizontal Ground Acceleration (PGA) at the ground surface was estimated to be up to 0.2g with a 2% probability of exceedance in 50 years. Design seismic coefficient for slope stability evaluations were estimated to be half of PGA, i.e., 0.1g. Considering seismicity of this region and the on-site soil conditions, DAA considered the site soils to be not susceptible to liquefaction.

In response to the permit application, DAA recently received the following technical comments from the Virginia Department of Environmental Quality (VDEQ) on the Attachment PTA-XXIII:

- 14.) The proposed landfill is located within the Central Virginia Seismic Zone. 9 VAC 20-81-120.C.3.b.(1) restricts siting of a landfill within a seismic impact zone unless the owner or operator demonstrates that all containment structures are designed to resist the maximum horizontal acceleration in lithified earth material for the site. Attachment XXIII indicates that the peak ground acceleration may be as much as 20% gravity for the landfill site. However, according to the USGS Unified Hazard Tool, the peak ground acceleration to be used for design purposes at this site location is 22.5% gravity, or 0.225g. Please note that the USGS updated the U.S. Seismic Hazard Long-Term Model in 2018. The applicant should use the updated data as appropriate in the Part A Permit Application.
- 15.) The proposed base grades depicted in Attachment XV of the Part A Permit Application are shown constructed into the bedrock in some areas, and atop as much as 35 feet of silts and sands in other areas of the site. Attachment XXIII indicates that the proposed landfill will incorporate a design seismic coefficient of 0.10g, or one-half the peak ground acceleration. However, it is not appropriate to set the seismic coefficient as one-half the peak bedrock acceleration at this stage, since the seismic coefficient is related to the peak acceleration at the ground surface, which may be amplified by the overlying soils and be different than the peak acceleration in bedrock.
- 16.) An assessment of the Liquefaction Potential should be performed based upon the geotechnical and hydrogeological data gathered from the site investigations (in particular in those areas with more extensive silts and sands, e.g., DAA-4sb and DAA-36pz). In addition, a preliminary seismic stability analysis should be performed for both conditions that may be present (i.e., landfill constructed into bedrock, and landfill constructed atop 35 feet or more of silts and sands), in order to demonstrate that the landfill can be designed to resist the maximum horizontal acceleration in bedrock, as required by 9 VAC 20-81-120.C.3.b.(2). Guidance for performing these assessments can be found in document EPA/600/R-95/051, RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities.

Schnabel Engineering was tasked by DAA to perform seismic evaluation of the proposed facility in light of the above VDEQ comments. Per VDEQ's recommendation (i.e., Comment No. 16), we followed the general guidelines of the document *EPA/600/R-95/051*, *RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities* in development of these responses. This document will be referred to as the 'EPA' document in this report.

In November 2021, DAA oversaw the installation of 11 Cone Penetration Test (CPT) soundings and two test borings at the site to supplement subsurface exploration activities conducted by DAA in 2019 (48 borings) and Koontz Bryant Johnson Williams in 2017 (20 borings). Figure A, at the end of this report, indicates the boring and CPT locations. These CPT soundings and the boring DAA-112pz were performed within/near specific areas of interest based on our preliminary liquefaction evaluation of the subsurface data that were previously collected. All the data from subsurface explorations and laboratory testing were provided to us by DAA and are presented as Attachment 3 at the end of this report for reference.

The following sections present our evaluations and responses to VDEQ Comments No. 14 through 16.

SCHNABEL'S RESPONSE TO VDEQ COMMENT NO. 14:

VDEQ Comment No. 14:

The proposed landfill is located within the Central Virginia Seismic Zone. 9 VAC 20-81-120.C.3.b.(1) restricts siting of a landfill within a seismic impact zone unless the owner or operator demonstrates that all containment structures are designed to resist the maximum horizontal acceleration in lithified earth material for the site. Attachment XXIII indicates that the peak ground acceleration may be as much as 20% gravity for the landfill site. However, according to the USGS Unified Hazard Tool, the peak ground acceleration to be used for design purposes at this site location is 22.5% gravity, or 0.225g. Please note that the USGS updated the U.S. Seismic Hazard Long-Term Model in 2018. The applicant should use the updated data as appropriate in the Part A Permit Application.

Schnabel's Response:

The latest version of the USGS hazard map, the 2018 National Seismic Hazard Long-Term Model (2018 NSHM) for the Conterminous United States (Shumway et al., 2021; https://www.usgs.gov/natural-hazards/earthquake-hazards/science/2018-united-states-lower-48-seismic-hazard-long-term?qt-science center objects), provides mapped acceleration parameters at the bed-rock level, i.e., Site Class B/C boundary, for the conterminous U.S. Accordingly, we determined the Peak Ground Acceleration (PGA) at the bed-rock level is 0.223g at this site for 2,500 year return period scenario (equivalent to 10% probability of exceedance in 250 years or 2% probability of exceedance in 50 years).

SCHNABEL'S RESPONSE TO VDEQ COMMENT NO. 15:

VDEQ Comment No. 15:

The proposed base grades depicted in Attachment XV of the Part A Permit Application are shown constructed into the bedrock in some areas, and atop as much as 35 feet of silts and sands in other areas of the site. Attachment XXIII indicates that the proposed landfill will incorporate a design seismic coefficient of 0.10g, or one-half the peak ground acceleration. However, it is not appropriate to set the seismic coefficient as one-half the peak bedrock acceleration at this stage, since the seismic coefficient is related to the peak acceleration at the ground surface, which may be amplified by the overlying soils and be different than the peak acceleration in bedrock.

Schnabel's Response:

The following sections present the peak acceleration at the ground surface (i.e., approximately at the base grade level) and the design seismic coefficient parameters and the respective development processes.

Estimation of Ground Surface Design Accelerations:

Seismic waves as they travel through soil layers to ground surface can get amplified or de-amplified based on factors such as geologic stratification, soil stiffness/density, soil dynamic properties, and intensity of the motion. This phenomenon is commonly known as site-effect on ground motion. 2018 NSHM incorporated site-effect on ground motion by incorporating new soil amplification factors. These factors were based on recently performed linear and non-linear site response analyses considering conditions specific to the Central and Eastern United States (CEUS). In 2018 NSHM, hazards are provided for 22 spectral periods (from 0.001 to 10 s) and for 8 uniform V_{S30} values (average shear wave velocity within upper 30 m, i.e., about 100ft depth below ground surface) between 150 m/sec and 1,500 m/sec.

Using seismic CPT soundings, DAA collected shear wave velocity (V_s) data at 5 locations at this site: DAA-105CP, DAA-107CP, DAA-109CP, DAA-110CP, and DAA-4CP. Based on these measured V_s data, the estimated V_{s30} values were determined and are presented in Table 1 below. Since all the seismic CPTs were refused shallower than 100 ft in probable very stiff soils and/or Disintegrated Rock (DR), V_s of 1,500 ft/sec was assumed for these materials below CPT refusal depths based on our experience with similar material in this geology. Bedrock depths were conservatively estimated based on nearby boring(s). V_s of 2,500 ft/sec was assumed for the anticipated bedrock (commonly accepted value for 'soft-bedrock' in the CEUS). This way the entire V_s column of 100 ft depth was generated to estimate V_{s30} values.

Seismic CPT	V _{S30} values, ft/sec (m/sec)
DAA-105CP	1,550 (473)
DAA-107CP	1,800 (549)
DAA-109CP	1,620 (494)
DAA-110CP	1,480 (451)
DAA-4CP	1,155 (352)

Table 1: Estimated Average Shear Wave Velocities

Based on this evaluation, the proposed landfill site was divided into two general areas:

- 1. Zone-I: near boring DAA-4SB and CPT DAA-4CP and surrounding areas where estimated V_{S30} value is about 1155 ft/sec (352 m/sec), and
- 2. Zone-II: rest of the site. We assumed the minimum estimated $V_{\rm S30}$ value of 1,480 ft/sec (451 m/sec) for this zone.

From 2018 NSHM, ground surface acceleration response spectra were generated for $V_{\rm S30}$ values of 260, 365 and 530 m/sec for this location. These spectra are presented in the below Figure 1. Based on these lines, ground surface acceleration response spectra were interpolated for $V_{\rm S30}$ values of 352 and 451 m/sec, corresponding to Zones-I & -II, respectively. These interpolated spectra are also presented in the Figure 1 below.

Ground surface (i.e., approximately at the base grade level) maximum considered earthquake (2,500 year return period scenario) compatible PGA, i.e., PGA_M, is spectral acceleration corresponding to 0.001 sec spectral period. From Figure 1, PGA_M were determined as 0.22g for both V_{S30} values of 352 and 451 m/sec. Since PGA at the bed-rock level is 0.223g (from previous section), site amplification factor (ratio

of PGA_M and PGA) is estimated as 1.0 for the entire site – hence site-effect on ground motion is insignificant at this site.

Please Note: Up to 37% amplification was reported in our August 26, 2021 memorandum to DAA (Preliminary Response to VDEQ Comments No. 14 and 15 on Part A Permit Application). We used ASCE 7-16 to derive these amplification factors instead of 2018 NSHM. In the 2018 NSHM, site-amplification factors were a new addition and had not been adopted in any code at that time. However, the latest ASCE 7, i.e., ASCE 7-22 has just become available (released on December, 2021), which has revised the approach of determining amplification factors and adopted the amplification factors from the 2018 NSHM. Since ASCE 7 committee has performed a thorough review on this latest USGS model, we have opted to revise our approach accordingly and have used 2018 NSHM model to generate ground surface spectral accelerations for this project. The 2018 NSHM indicates no amplification of ground motion due to site-effect at this location.

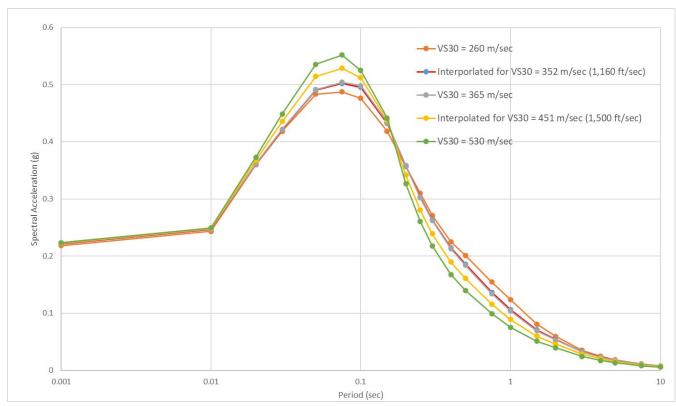


Figure 1: 2018 NSHM – Acceleration Response Spectra at Approximate Base Grade Level (2,500 Year Return Period)

Seismic Coefficient, Ks for Stability Evaluation:

We evaluated the EPA guideline for determining the design seismic coefficient, K_S for seismic slope stability evaluation. Per Figure 4.8 of the EPA guidance document, also presented below as Figure 2, indicates that the peak average acceleration of the waste mass, i.e., K_S can be less than 50% of PGA_M if the fundamental period of the waste mass is at least about 1.8 times greater than the fundamental period of the design earthquake.

Fundamental period of the waste mass:

Fundamental period of the waste mass, T_{MSW} = 4 x Landfill Height / V_S of the Waste Mass

Considering a maximum overall landfill height of 330 ft for this project and overall V_s of 650 ft/sec (200 m/sec) for the Waste Mass, T_{MSW} was calculated as 2.03 seconds. V_s of the waste mass was conservatively selected per Figure 4.10 of the EPA guidance document.

Fundamental period of design ground motion:

Fundamental period of design ground motion can be selected using the Figure 1 above. The spectral period corresponding to the peak spectral accelerations is about 0.075 sec, which is considered as the fundamental period of the design ground motion at this site.

Accordingly, the fundamental period of the waste mass is at least about 1.8 times (specifically about 27 times) greater than the fundamental period of the design earthquake. Hence, Ks can be conservatively estimated as half of PGA_M, i.e., 0.11g for the entire site. This value was used in our preliminary seismic stability evaluation presented in a later section.

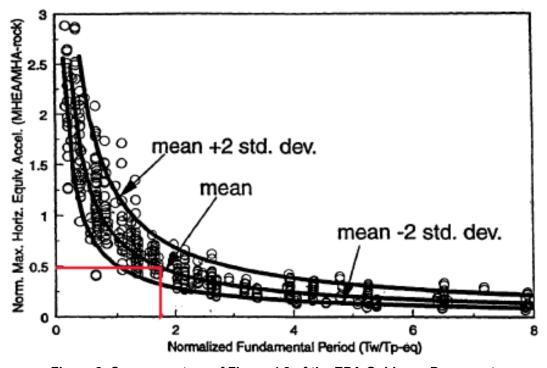


Figure 2: Screen-capture of Figure 4.8 of the EPA Guidance Document.

SCHNABEL'S RESPONSE TO VDEQ COMMENT NO. 16:

VDEQ Comment No. 16:

An assessment of the Liquefaction Potential should be performed based upon the geotechnical and hydrogeological data gathered from the site investigations (in particular in those areas with more extensive silts and sands, e.g., DAA-4sb and DAA-36pz). In addition, a preliminary seismic stability

analysis should be performed for both conditions that may be present (i.e., landfill constructed into bedrock, and landfill constructed atop 35 feet or more of silts and sands), in order to demonstrate that the landfill can be designed to resist the maximum horizontal acceleration in bedrock, as required by 9 VAC 20-81-120.C.3.b.(2). Guidance for performing these assessments can be found in document EPA/600/R-95/051, RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities.

Schnabel's Response:

Liquefaction assessment and preliminary seismic stability evaluations were performed and are presented in the below sections.

Liquefaction Assessment

When saturated, loose, cohesionless soils undergo cyclic loading, micro-structures of soil particles undergo re-arrangement and contraction, and hence generate excessive pore water pressure. Large magnitude earthquakes usually exert large acceleration and usually are longer events. A sustained ground motion that is large enough and acting over a long enough period of time can develop enough excess pore-water pressure which can reduce/negate soil's effective overburden stress, thereby significantly reducing or even no soil shear strength. This phenomena in saturated, loose, cohesionless soils is considered 'liquefaction'.

We initially performed a screening of the available data (boring logs, and laboratory test results) to evaluate possible susceptibility to liquefaction. Loose/soft and low plasticity (Plasticity Index ≤7) sand and silts that are below groundwater table, which will be left below the excavation level (i.e., to attain the proposed base grade), were identified during this screening step.

These layers were then further analyzed using simplified liquefaction triggering evaluation approach following Boulanger & Idriss (2014) for SPT based methods. These SPT based evaluations yielded results (presented in section below) that indicated further evaluation was necessary. Accordingly, DAA performed a supplemental exploration program in November, 2021 which included one boring (DAA-112pz) and 11 CPT soundings at locations that were selected based on the initial liquefaction evaluation efforts. We then evaluated these additional data for liquefaction susceptibility. CPT soundings were analyzed using simplified liquefaction triggering evaluation approach following Boulanger & Idriss (2014) for CPT based methods.

In liquefaction triggering evaluation, factor of safety (FS) against liquefaction triggering is computed by the ratio of cyclic stress ratio (CSR) induced by the design seismic event and cyclic resistance ratio (CRR) of soil. CSR is a function of PGA_M (0.22g), depth of soil strata, and moment magnitude (M_w) of the design event. In SPT based method, CRR is a function of SPT blow counts with hammer energy and confining stress correction. In CPT based method, CRR is a function of corrected cone resistance and fines content (i.e., finer than No. 200 sieve). CRR is adjusted to a clean-sand equivalent CRR in both methods following equations provided in Boulanger & Idriss (2014). These evaluations were performed considering the excavation to attain the proposed base grade elevations for applicable borings and CPT soundings.

The susceptibility of sand-like soils to cyclic liquefaction has been found to be a function of geologic age and origin. Hayati and Andrus (2009) studied the effect of age of deposit on CRR. They proposed an equation for the age correction factor for CRR, K_{DR} = 0.13 x Log(t)+0.83. Here, t is the time since last deposition (for sedimentary-type soil) or last critical disturbance (i.e., last major seismic event that caused liquefaction in the strata). While this equation was developed based on a data set from coastal deposits, we made an attempt to estimate K_{DR} that is applicable to residual soils found at this site. The site is underlain by Porphyroblastic Biotite Gneiss which is from the Proterozoic period, i.e., about 541 million years old. Using the equation above, K_{DR} is estimated as 2.0. Considering the design seismic event under consideration has a return period of 2,500 year, we can very conservatively assume liquefaction was triggered at this site in that time-frame, hence K_{DR} can be estimated as 1.3. Since this equation was not specifically developed based on residual soils, a conservative estimation of K_{DR} , i.e., 1.3, was considered reasonable to be used in this study to increase CRR. In practicality, K_{DR} in residual soils is possibly much higher.

Liquefaction Potential Index (LPI), Iwasaki et al. (1978), is an index that provides a generic quantification of the severity of surface manifestation of liquefaction that is probable based on the depth and thickness of liquefiable layer(s). LPI is a function of thickness of the liquefied layer, thickness of non-liquefied crust over the liquefied layer, and FS against liquefaction of the liquefied layers (i.e., layers with FS less than 1.0). LPI can range from 0 for a site with no liquefaction potential to a maximum of 100 for a site where FS is zero. However, SPT data from 45 liquefaction sites in Japan, Iwasaki et al. (1978) found that 80% of the sites had LPI > 5, while 50% had LPI > 15. Based on this observation, they proposed that severe liquefaction damage should be expected for sites where LPI > 15 but should not be expected for sites where LPI is less than 5. Although an old method, several research studies (Toprak & Holzer, 2003; Li, Juang & Andrus, 2006; Green, Maurer & van Ballegooy, 2018) have been performed based on the LPI framework, and LPI has largely remained as one of most reliable means to assess susceptibility of liquefaction hazard at the ground surface. Specifically, Li, Juang & Andrus (2006) evaluated the appropriateness of the formulation of the LPI in the light of the newer research efforts at that time. They concluded that the Iwasake et al. (1978) LPI model provides acceptable results in estimating severity of surface manifestation of liquefaction. LPI model is especially conservative when used in conjunction with FS computed using Boulanger & Idriss (2014) model.

M_w of Design Earthquake:

A seismic deaggregation plot provides a broad picture of the viable earthquake sources that contribute to the total seismic hazard at the subject site. Deaggregation plot presents the probable moment magnitudes, site-to-source distances, and contribution percentage of each viable source around a site. We used the 2014 USGS Seismic Hazard Tool (2018 based tool has not been available to public to this date) to generate deaggregation hazard plots at this site. The deaggregation plot for the 2,500 year return period (2% probability of exceedance in 50 years) for this site is presented in Figure 3 below. The relatively taller columns in a deaggregation plot corresponds to the most viable source(s) that have the largest probability to generate an event during the design life of the structure. The site-specific deaggregation plot indicates the Central Virginia Seismic Zone (CVSZ) controls the seismic hazard for PGA at this site. Based on this deaggregation run, the mean Mw and site-to-source distance for PGA

were determined as 5.44 and about 19 kilometers for this site. Accordingly, M_w of 5.44 was selected for liquefaction evaluation in this study.

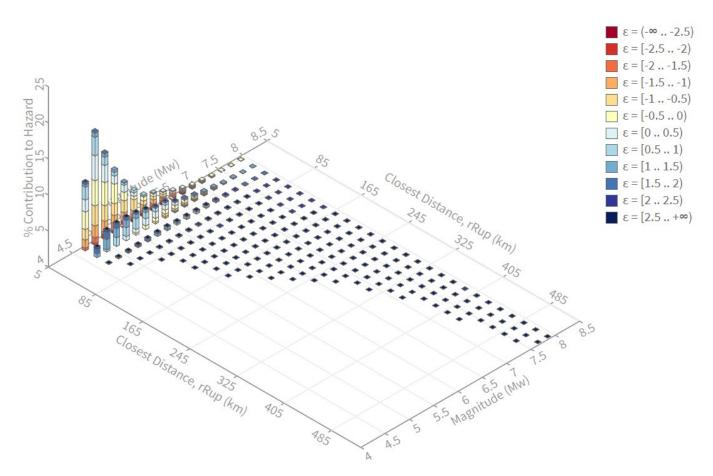


Figure 3: Deaggregation of Seismic Hazards for PGA (2014 NSHM; 2,500 year Return Period).

SPT Based Triggering Evaluation Results:

Liquefaction triggering evaluation were performed for Borings DAA-4sb, DAA-8pz and DAA-36pz. All other borings, including the recently performed Boring DAA-112pz, appeared to be underlain by non-liquefiable strata based on screening evaluation. Figure 4 presents the FS against Liquefaction calculated for Borings DAA-4sb, DAA-8pz and DAA-36pz.

Sandy soils between 14 and 20 ft depth (EL 333.5 and 327.5) in Boring DAA-4sb indicated FS below 1.0, which means this strata is potentially susceptible to liquefaction during the design seismic event. All other layers in Boring DAA-4sb and entire profiles in Borings DAA-8pz and DAA-36pz indicate a minimum FS of 1.0, i.e., not susceptible to liquefaction during the design seismic event.

LPI was estimated as less than 4.0 at Boring DAA-4sb.

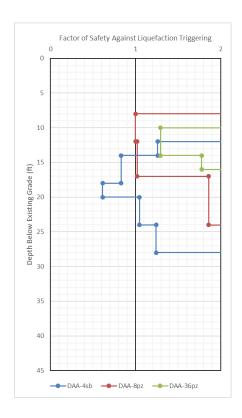


Figure 4: SPT Based Liquefaction Triggering Evaluation Results.

CPT Based Triggering Evaluation Results:

SPT based evaluation indicated that further evaluation was necessary, especially near Boring DAA-4sb. Accordingly, DAA performed a supplemental exploration program in November, 2021 which included one boring (DAA-112pz) and 11 CPT soundings in the areas of interest at this site. Liquefaction triggering evaluation were performed on all CPT soundings, except for DAA-111CP due to shallow refusal encountered at this location. CPT based evaluation results are included in Attachment 1. All the CPT soundings indicated FS against liquefaction triggering of at least 1.0.

CPT sounding DAA-4CP was performed within few feet of Boring DAA-4sb. FS profile for DAA-4CP is presented in Figure 5 and is also presented in Attachment 1. In DAA-4CP, few very thin lenses (less than 6 inches thick) between 14 and 17 ft depth indicated FS less than 1.0. After evaluating these layers, we suspect these to be due to a known issue of CPT sounding called 'thin layer effect'. This effect happens at the layer transitions where soil stiffness varies significantly. Liquefaction evaluations at these transitions are usually considered not representative of the actual condition.

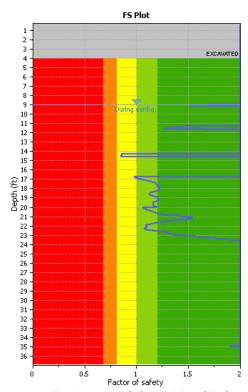


Figure 5: Estimated FS for DAA-4CP Sounding.

Figure 6 presents overall summary of the estimated LPI of the CPT soundings. DAA-4CP sounding indicated LPI of less than 1.0. All other CPT soundings indicated LPI of 0.

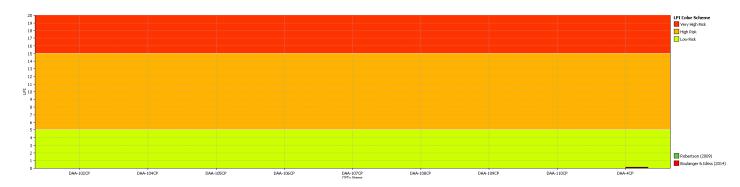


Figure 6: Estimated LPI from CPT Based Liquefaction Triggering Evaluation.

Overall Commentary on Liquefaction Evaluation Results:

SPT based liquefaction triggering evaluation indicated FS against liquefaction triggering of less than 1.0 for sandy soil layers between 14 and 20 ft depth (EL 333.5 and 327.5) in Boring DAA-4sb. However, LPI was estimated less than 4.0. LPI below 5.0 was reported to be not likely to liquefy by Iwasake et al. (1978).

CPT based liquefaction triggering evaluation indicated FS against liquefaction triggering of at least 1.0 for all the CPT soundings performed at this site, including at the CPT location within a few feet of the Boring DAA-4sb. LPI was estimated less than 1.0.

CPT sounding based liquefaction triggering evaluation technique is generally more trusted and is preferred by the engineering community over SPT based evaluations. This is primarily because quality of data from CPT is superior to SPT, especially for saturated sandy soils below ground water table. Therefore, considering our liquefaction screening evaluation, estimated FS against liquefaction triggering, and LPI values for the borings and CPT soundings, we consider liquefaction is not likely at this site including areas near boring/CPT sounding DAA-4sb/ DAA-CP.

Additionally, our evaluation was based on the consideration of the proposed base grade level. As the liner is placed and consequent filling of the waste material, confining pressure of the underlying foundation strata will increase which will positively increase the CRR, and hence, FS against liquefaction triggering. Figure 7 presents FS against liquefaction with only 5 feet of waste mass (assumed unit weight of 60 pcf) at DAA-4CP location. We can observe about 12% increase of FS with this small filling of waste mass at this location. Similar improvement is also expected in the rest of the site. FS will continue to increase with additional filling of waste mass which will further reduce probability of liquefaction hazard at this site.

Based on supplemental subsurface data (CPT and borings) and our evaluations presented in this section, we believe cyclic liquefaction borne hazard is not likely at this site. Therefore, site conditions are not susceptible to liquefaction and does not need to be incorporated into site design.

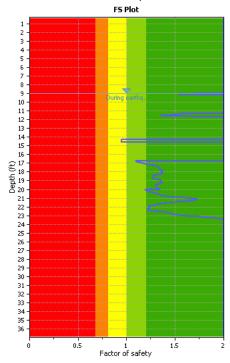


Figure 7: Estimated FS for DAA-4CP Considering 5 feet of Waste Mass Fill Overburden.

Preliminary Seismic Stability Evaluations

Preliminary seismic slope stability analyses (pseudo-static stability) were performed at two selected locations across the proposed landfill footprint following the guidelines provided in the EPA document. Figure A shows the approximate locations of the selected north and south sections. The south section is underlain by a deeper soil profile associated with Boring DAA-4sb/ CPT sounding DAA-4cp and involves the tallest portion of the proposed landfill mass. The majority of the north section is underlain by relatively thin section of residual soils and Saprolite. The proposed gradient of the base grade is relatively steeper in the northern section area. We used *Slide2*, a 2-dimensional limit-equilibrium slope stability analysis software by Rocscience, in this study. Per our evaluations presented in a previous section, K_S of 0.11g was used in this preliminary seismic stability evaluation.

Material Parameter Selection and Stability Model Setup:

Appendix 3 at the end of this report includes stability models for both the north and south sections. Soil parameters (unit weight, cohesion and friction angle) were developed based on published correlations with the borings and CPT sounding data. We used drained and undrained parameters for the coarse and fine grained soils, respectively, which is customary for pseudo-static analysis. However, undrained shear strength was assigned for the loose sand layer in south section (i.e., Boring DAA-4sb/ CPT DAA-4cp), considering this layer could possibly have a few slightly contractive lenses.

Based on recommendations from the EPA document and some other published data (Stark & Huvaj-Sarihan, 2009, and Reddy et al., 2009), we estimated MSW unit weight, cohesion and friction angle to be 60 pcf, 500 psf and 20 degrees, respectively. Based on a communication with DAA on February 10, 2022, we understand the conceptual bottom liner section involves (top to bottom):

- 18 inches thick gravel leachate collection layer
- Geocomposite drainage net
- 60 mil textured High Density Polyethylene (HDPE) liner
- Geosynthetic Clay Liner (GCL), and
- 12 inches thick layer of compacted subgrade

Based on our experience with landfill design, the interface between GCL and subgrade soil usually has the lowest resistance against sliding along the contact plane among all interfaces within the liner structure. Accordingly, based on experience, we selected the peak and residual friction angles as low as 17 and 8 degrees, respectively, for this interface. The interface between GCL and subgrade soil was modeled using a feature available in SLIDE2 'Weak Layer', although we did not limit the failure surfaces only through the weak layer. Stark & Poeppel (1994) studied applicability of peak and residual shear strengths of GCL-Soil interface and concluded that due to settlement within waste mass, residual strength will possibly mobilize in this interface within the side slopes while peak strength should be applicable at the base. Accordingly, we have used residual friction angle (phi = 8 degrees) for the weak layer (i.e., GCL-Soil interface) in the side slopes while peak friction angle (i.e., phi = 17 degrees) was assigned for the weak layer at the bottom liner location.

In SLIDE2, both the south and north sections were analyzed using Spencer's Method. The failure surface (i.e., slip surface) search engine in SLIDE2 evaluates the entire section for possible circular/ non-circular (i.e., block) slip surfaces and derive the surface with the minimum FS.

Overall Outcome of Stability Evaluations:

Appendix 3 at the end of this report includes stability analysis results for both the north and south sections. In the results pages in Appendix 3, FS for the slip surfaces and corresponding center points are presented using heat maps in addition to the Global Minimum Slip Surface (and corresponding FS).

Based on our stability analyses, both the north and south sections appear to have the minimum FS slightly above 1.0. Per the EPA document (see below screen capture from Section 6.2, Page 107), FS above 1.0 is acceptable for pseudo-static stability evaluation, provided up to about 1.0 ft of deformation is tolerable for this 2,500 year design event (return period).

Step 3: Perform the pseudo-static stability analysis. If the minimum factor of safety, FS_{min}, exceeds 1.0 and 0.3 m (1 ft) of deformation is acceptable, the seismic stability analysis is completed.

Based on these results, our assessment is: both the south and north sections are stable under seismic inertial loading conditions. Hence, based on this preliminary evaluation, we think the proposed facility can be designed to be stable under the design seismic event. At both the south and north sections, the minimum slip surfaces traversed through the weak layer (i.e., GCL-Soil interface). This highlights the fact that this interface controls the stability of the structure. During the design phase of this project, we recommend care should be given to assess the validity of the sets of assumptions that were made in this study, especially regarding the strength parameters of the GCL-Soil interface.

LIMITATIONS

This report is intended for use concerning this specific project. We based the analyses and recommendations submitted in this report on the available information. Substantial changes in loads, locations, or grades should also be brought to our attention so we can modify our recommendations as needed.

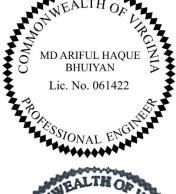
We have endeavored to complete the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality and under similar conditions as this project. No other representation, express or implied, is included or intended, and no warranty or guarantee is included or intended in this report, or other instrument of service.

Draper Aden Associates

Green Ridge RDF - Part A Permit Application - VDEQ Comments No. 14-16 Resolution Support

We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,


SCHNABEL ENGINEERING, LLC

Md. Ariful H. Bhuiyan, PhD, PE

Project Engineer

Steven E. Conner, PE Principal Engineer

MHB:SEC:rm

STEVEN E. CONNER Lic. No. 018709

ATTACHMENTS

Figure A – Test Location Plan (Provided by DAA)

Attachment 1 – Liquefaction Triggering Evaluation – CPT Based Approach

Attachment 2 – Preliminary Seismic Stability Evaluation

- North Section
- South Section

Attachment 3 - Subsurface Exploration Data Provided by DAA

- CPT Sounding Report by Conetec
- Log of DAA 2021 Boring, DAA-112pz
- Logs of DAA Borings from 2019
- Laboratory Test Summary from DAA's 2019 Exploration
- Logs of KBJW Borings from 2017

REFERENCES

Boulanger, R. W., and I. M. Idriss. CPT and SPT based liquefaction triggering procedures. *Report No. UCD/CGM.-14 1*, 2014.

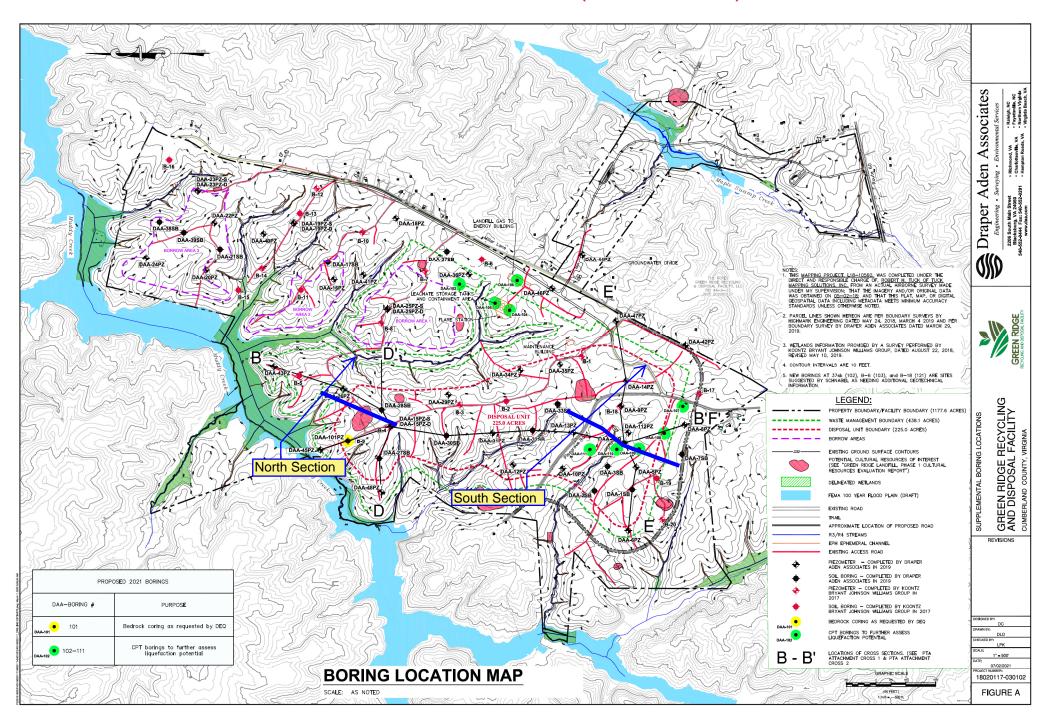
Green, R.A., Maurer, B.W. and van Ballegooy, S. "The influence of the non-liquefied crust on the severity of surficial liquefaction manifestations: Case history from the 2016 Valentine's Day earthquake in New Zealand." In *Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation*, pp. 21-32. Reston, VA: American Society of Civil Engineers, 2018.

Iwasaki, T., Tatsuoka, F., Tokida, K., & Yasuda, S. (1978). "A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan." Proc. *2nd Intern. Conf. Microzonation*, Vol. 2 (1978): 885-896.

Li, D.K., Juang, C.H., & Andrus, R.D. "Liquefaction potential index: a critical assessment using probability concept." *Journal of GeoEngineering* 1, no. 1 (2006): 11-24.

Reddy, Krishna R., Janardhanan Gangathulasi, Naveen S. Parakalla, Hiroshan Hettiarachchi, Jean E. Bogner, and Thomas Lagier. "Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations." *Waste Management & Research* 27, no. 6 (2009): 578-587.

Richardson, Gregory Neil, Edward Kavazanjian, and Neven Matasovi. "RCRA Subtitle D (258) Seismic design guidance for municipal solid waste landfill facilities. "Risk Reduction Engineering Laboratory, Office of Research and Development, *US Environmental Protection Agency*, 1995.


Robertson, P.K. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering - from case history to practice, IS -Tokyo (2009).

Stark, Timothy D., and Alan R. Poeppel. "Landfill liner interface strengths from torsional-ring-shear tests." *Journal of Geotechnical Engineering* 120, no. 3 (1994): 597-615.

Stark, Timothy D., Nejan Huvaj-Sarihan, and Guocheng Li. "Shear strength of municipal solid waste for stability analyses." *Environmental geology* 57, no. 8 (2009): 1911-1923.

Toprak, S., and Holzer, T.L. "Liquefaction potential index: Field assessment." *Journal of Geotechnical and Geoenvironmental Engineering* 129, no. 4 (2003): 315-322

FIGURE A - TEST LOCATION PLAN (PROVIDED BY DAA)

ATTACHMENT 1 - LIQUEFACTION TRIGGERING EVALUATION - CPT BASED APPROACH

LIQUEFACTION TRIGGERING EVALUATION - CPT BASED APPROACH

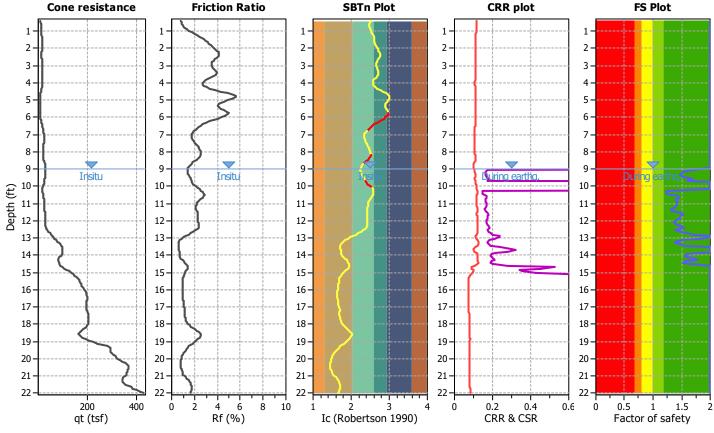
TABLE OF CONTENTS

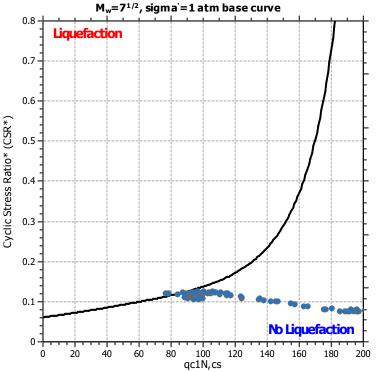
Summary data report	1
DAA-104CP results Summary data report	2
DAA-105CP results Summary data report	3
DAA-106CP results Summary data report	4
DAA-107CP results Summary data report	5
DAA-108CP results Summary data report	6
DAA-109CP results Summary data report	7
DAA-110CP results Summary data report	8
DAA-4CP results Summary data report	9

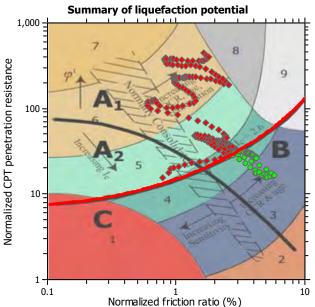
Project title: Green Ridge RDF - Part A Permit Application **Location: Cumberland County, Virginia**

CPT file: DAA-102CP

Peak ground acceleration:


Input parameters and analysis data


0.22


A naly sis method: B&I (2014) Fines correction method: B&I (2014) Points to test: Earthquake magnitude M

G.W.T. (in-situ): G.W.T. (earthq.): Based on Ic value Average results interval: Ic cut-off value: Unit weight calculation:

9.00 ft 9.00 ft 2.60 Based on SBT Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: Yes K_{σ} applied: Yes Clay like behavior applied: Sand & Clay Limit depth applied: Yes Limit depth: 60.00 ft MSF method: Method based

Zone A_1 : Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A_2 : Cyclic liquefaction and strength loss likely depending on loading and ground

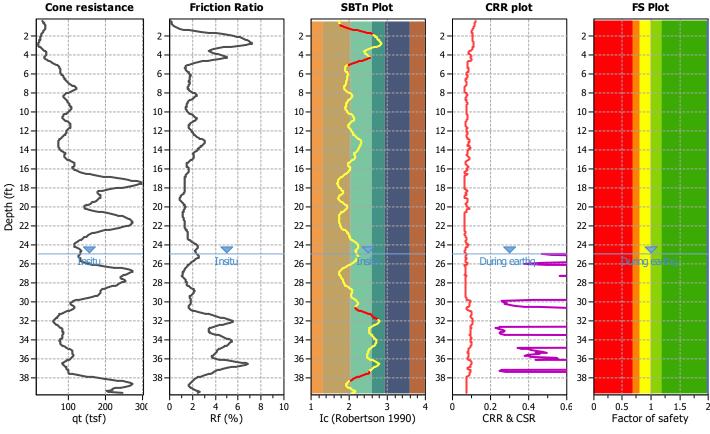
Project title : Green Ridge RDF - Part A Permit Application Location : Cumberland County, Virginia

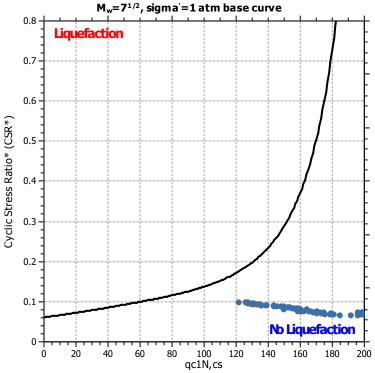
CPT file: DAA-104CP

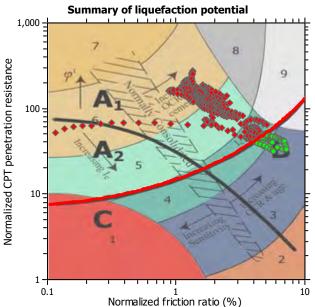
Input parameters and analysis data

A naly sis method: B8
Fines correction method: B8
Points to test: B8
Earthquake magnitude M w: 5.

Peak ground acceleration:


B&I (2014) B&I (2014) Based on Ic value 5.44


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

25.00 ft 25.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Use fill:} & \text{No} \\ \text{Fill height:} & \text{N/A} \\ \text{Fill weight:} & \text{N/A} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$

Clay like behavior
applied: Sand & Clay
Limit depth applied: Yes
Limit depth: 60.00 ft
MSF method: Method based

Zone A_1 : Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A_2 : Cyclic liquefaction and strength loss likely depending on loading and ground geometry

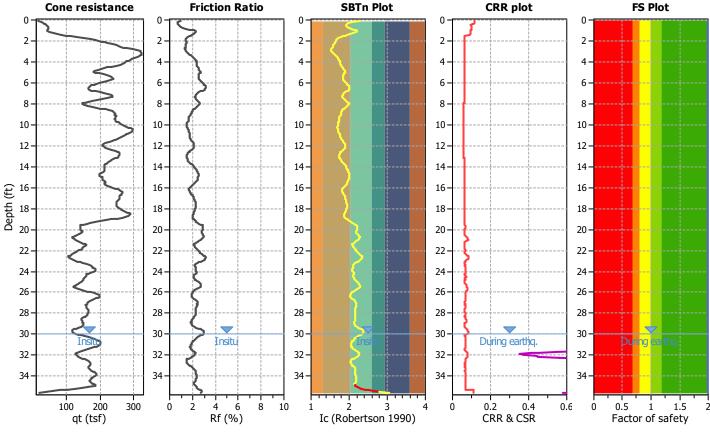
Project title : Green Ridge RDF - Part A Permit Application Location : Cumberland County, Virginia

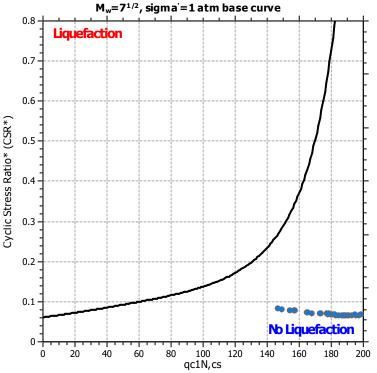
CPT file: DAA-105CP

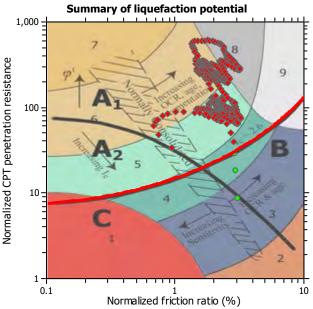
Input parameters and analysis data

A naly sis method: Fines correction method: Points to test: Earthquake magnitude M w:

Peak ground acceleration:


B&I (2014) B&I (2014) Based on Ic value 5.44


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

30.00 ft 30.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Use fill:} & \text{No} \\ \text{Fill height:} & \text{N/A} \\ \text{Fill weight:} & \text{N/A} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$

Clay like behavior
applied: Sand & Clay
Limit depth applied: Yes
Limit depth: 60.00 ft
MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

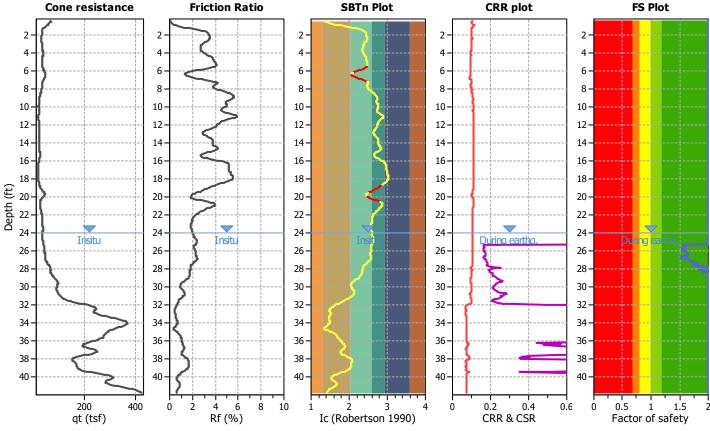
Project title: Green Ridge RDF - Part A Permit Application Location: Cumberland County, Virginia

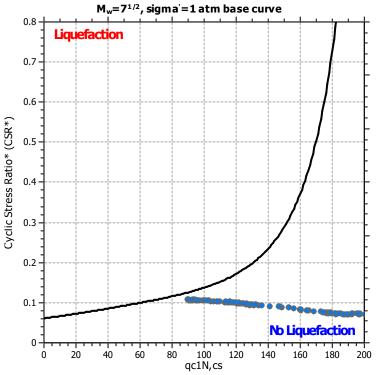
CPT file: DAA-106CP

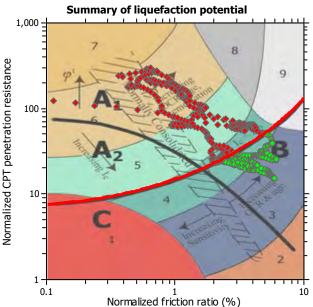
Input parameters and analysis data

A naly sis method: B Fines correction method: B Points to test: B Earthquake magnitude M w: 5

Peak ground acceleration:


B&I (2014) B&I (2014) Based on Ic value 5.44


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

24.00 ft 24.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Use fill:} & \text{No} \\ \text{Fill height:} & \text{N/A} \\ \text{Fill weight:} & \text{N/A} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$

Clay like behavior applied: Sand & Clay Limit depth applied: Yes Limit depth: 60.00 ft MSF method: Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Project title: Green Ridge RDF - Part A Permit Application Location: Cumberland County, Virginia

CPT file: DAA-107CP

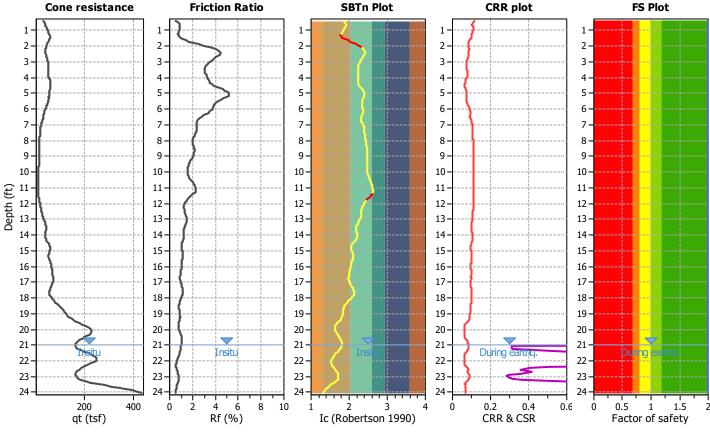
Input parameters and analysis data

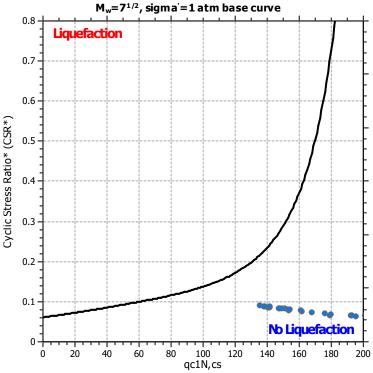
A naly sis method: Fines correction method: Points to test: Earthquake magnitude M w:

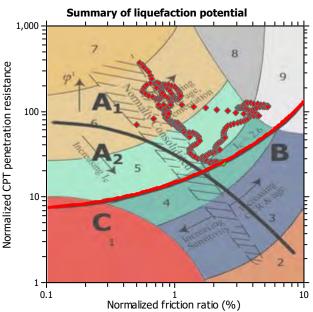
Peak ground acceleration:

B&I (2014) B&I (2014) Based on Ic value 5.44

0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:


21.00 ft 21.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Use fill:} & \text{No} \\ \text{Fill height:} & \text{N/A} \\ \text{Fill weight:} & \text{N/A} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$


Clay like behavior applied: Sa Limit depth applied: Ye Limit depth: 60

MSF method:

Sand & Clay d: Yes 60.00 ft Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Project title: Green Ridge RDF - Part A Permit Application

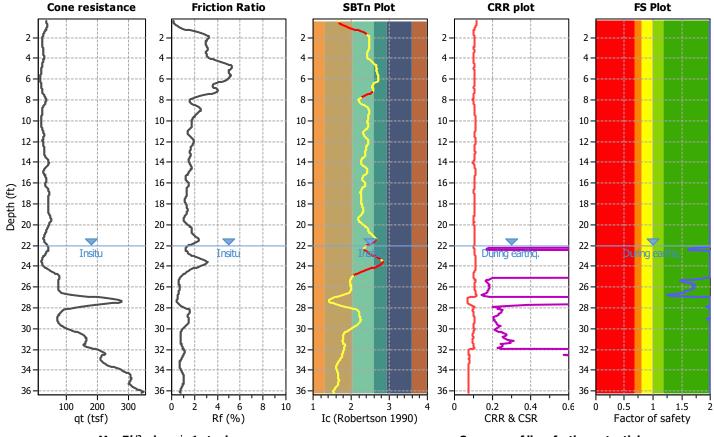
Location: Cumberland County, Virginia

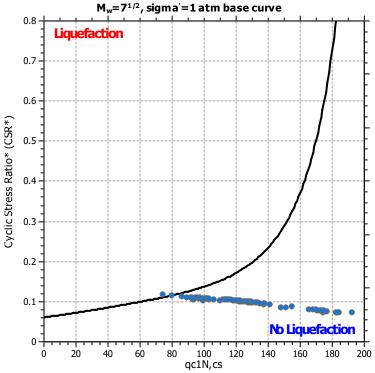
CPT file: DAA-108CP

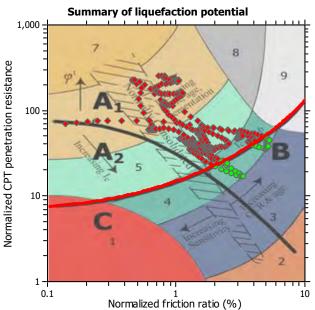
Peak ground acceleration:

Input parameters and analysis data

A naly sis method: Fines correction method: Points to test: Earthquake magnitude M


B&I (2014) B&I (2014) Based on Ic value


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

22.00 ft 22.00 ft 2.60 Based on SBT Use fill: Nο Fill height: N/A Fill weight: N/A Trans. detect. applied: Yes K_{σ} applied: Yes Clay like behavior applied: Limit depth applied: Limit depth:

Sand & Clay Yes 60.00 ft MSF method: Method based

Zone A_1 : Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A_2 : Cyclic liquefaction and strength loss likely depending on loading and ground

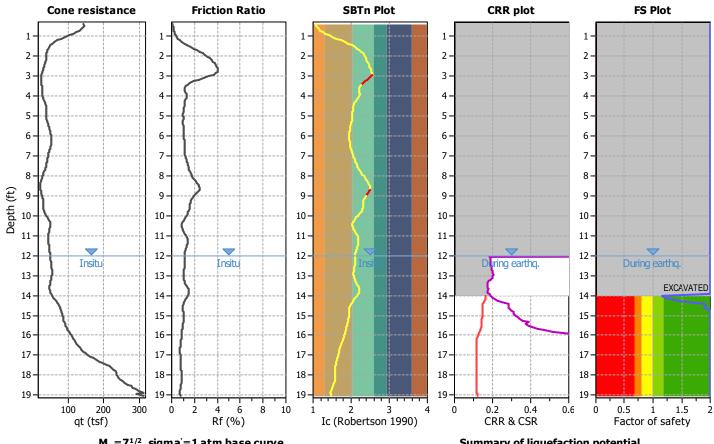
Project title: Green Ridge RDF - Part A Permit Application Location:

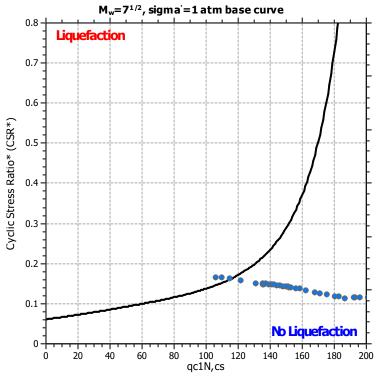
Location: Cumberland County, Virginia

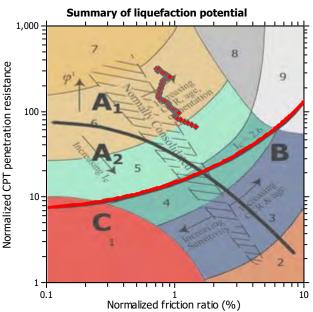
CPT file: DAA-109CP

Input parameters and analysis data

A naly sis method: Fines correction method: Points to test: Earthquake magnitude M w Peak ground acceleration: B&I (2014) B&I (2014) Based on Ic value 5.44


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation: 12.00 ft 12.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Excavation:} & \text{Yes} \\ \text{Excavation depth:} & 14.00 \text{ ft} \\ \text{Footing load:} & 0.10 \text{ tsf} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$


Clay like behavior applied: Limit depth applied: Limit depth:

MSF method:

Sand & Clay i: Yes 60.00 ft Method based

Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

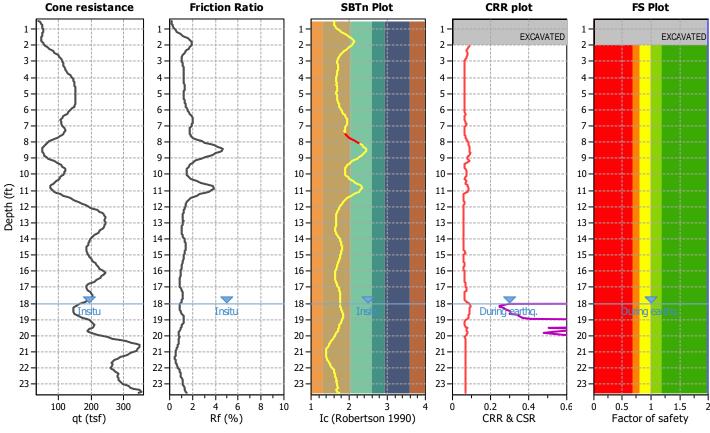
Project title: Green Ridge RDF - Part A Permit Application Location

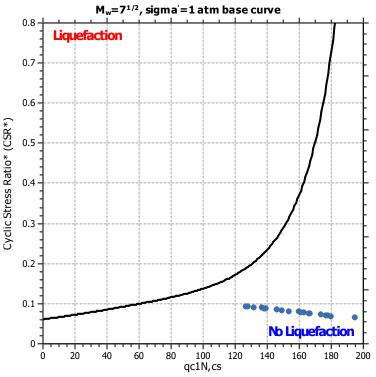
Location: Cumberland County, Virginia

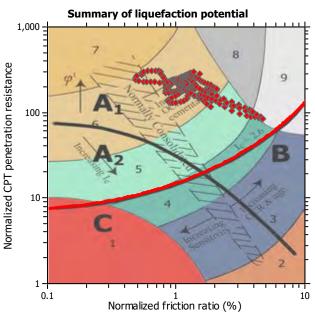
CPT file: DAA-110CP

Input parameters and analysis data

A naly sis method: Fines correction method: Points to test: Earthquake magnitude M w


Peak ground acceleration:


B&I (2014) B&I (2014) Based on Ic value 5 44


0.22

G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation: 18.00 ft 18.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Excavation:} & \text{Yes} \\ \text{Excavation depth:} & 2.00 \text{ ft} \\ \text{Footing load:} & 0.00 \text{ tsf} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$

ft tsf Clay like behavior
applied: Sand & Clay
Limit depth applied: Yes
Limit depth: 60.00 ft
MSF method: Method based

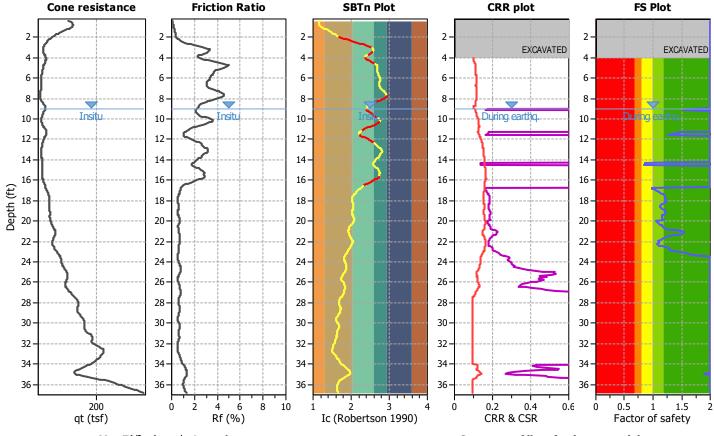
Zone A_1 : Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A_2 : Cyclic liquefaction and strength loss likely depending on loading and ground geometry

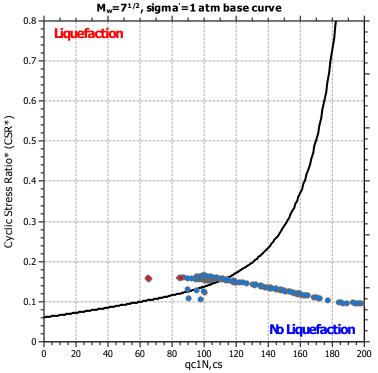
Project title: Green Ridge RDF - Part A Permit Application Location: Cur

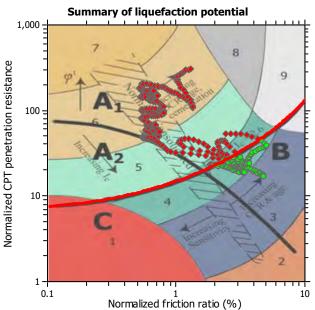
Location: Cumberland County, Virginia

CPT file: DAA-4CP

Input parameters and analysis data

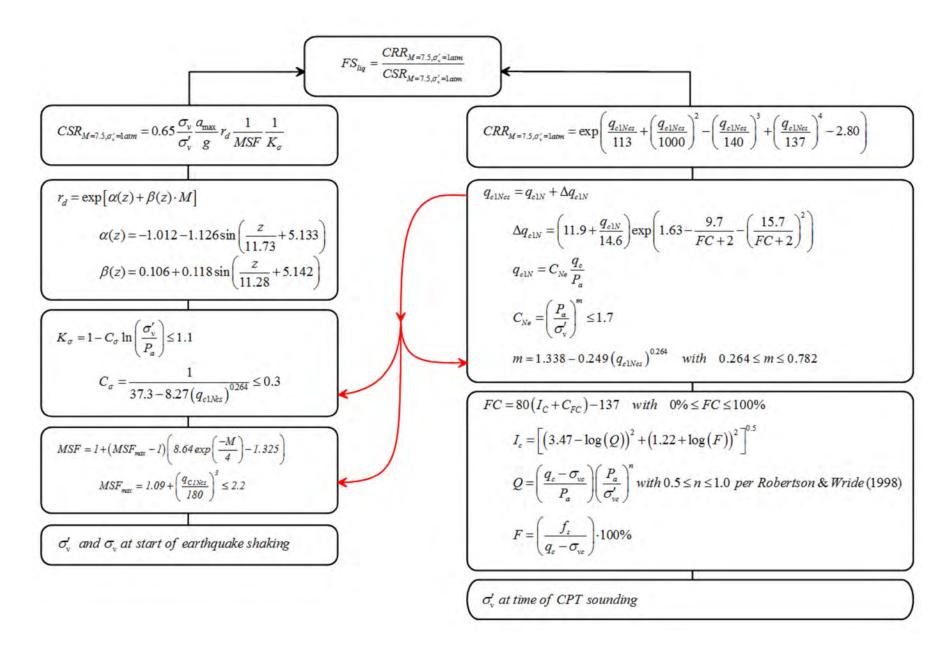

A naly sis method: Fines correction method: Points to test: Earthquake magnitude M w: Peak ground acceleration: B&I (2014) B&I (2014) Based on Ic value 5.44


0.22


G.W.T. (in-situ): G.W.T. (earthq.): Average results interval: Ic cut-off value: Unit weight calculation:

9.00 ft 9.00 ft . 2.60 Based on SBT $\begin{array}{lll} \text{Excavation:} & \text{Yes} \\ \text{Excavation depth:} & 4.00 \text{ ft} \\ \text{Footing load:} & 0.00 \text{ tsf} \\ \text{Trans. detect. applied:} & \text{Yes} \\ \text{K_{α} applied:} & \text{Yes} \\ \end{array}$

t sf Clay like behavior
applied: Sand & Clay
Limit depth applied: Yes
Limit depth: 60.00 ft
MSF method: Method based



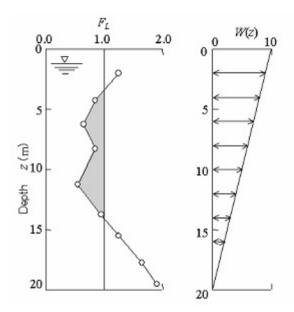
Zone A₁: Cyclic liquefaction likely depending on size and duration of cyclic loading Zone A₂: Cyclic liquefaction and strength loss likely depending on loading and ground

Procedure for the evaluation of soil liquefaction resistance, Boulanger & Idriss(2014)

Liquefaction Potential Index (LPI) calculation procedure

Calculation of the Liquefaction Potential Index (LPI) is used to interpret the liquefaction assessment calculations in terms of severity over depth. The calculation procedure is based on the methology developed by Iwasaki (1982) and is adopted by AFPS.

To estimate the severity of liquefaction extent at a given site, LPI is calculated based on the following equation:

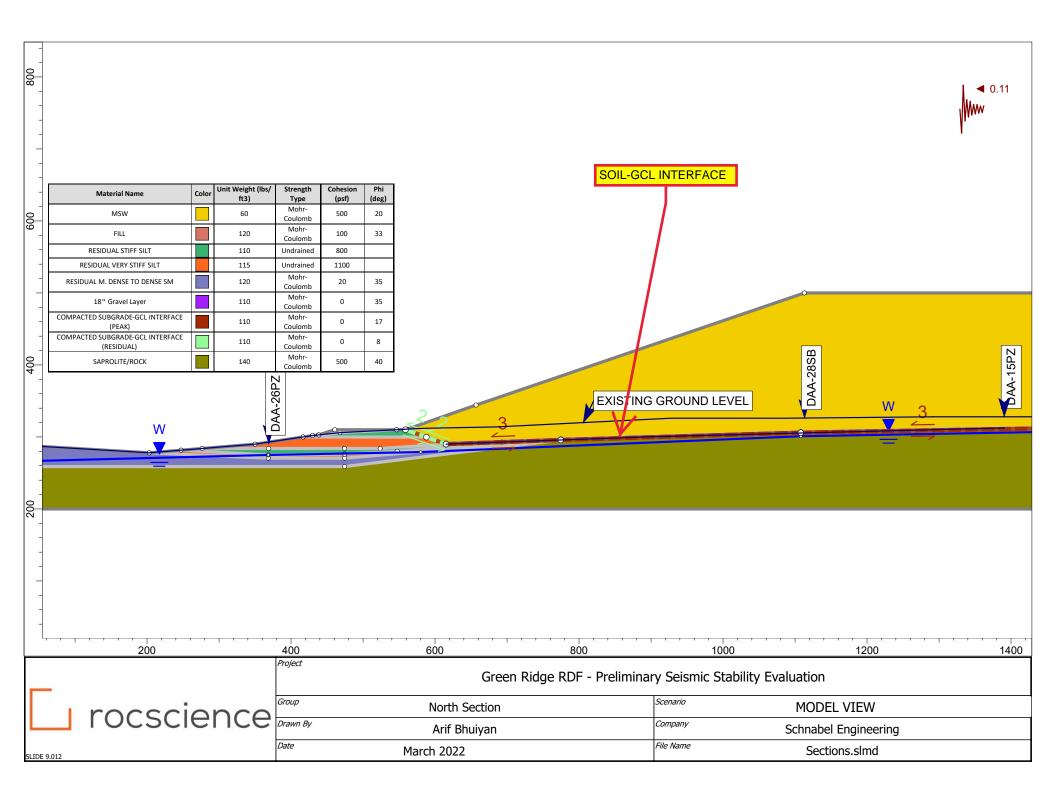

$$\mathbf{LPI} = \int_{8}^{20} (10 - 0.5_{Z}) \times F_{L} \times d_{z}$$

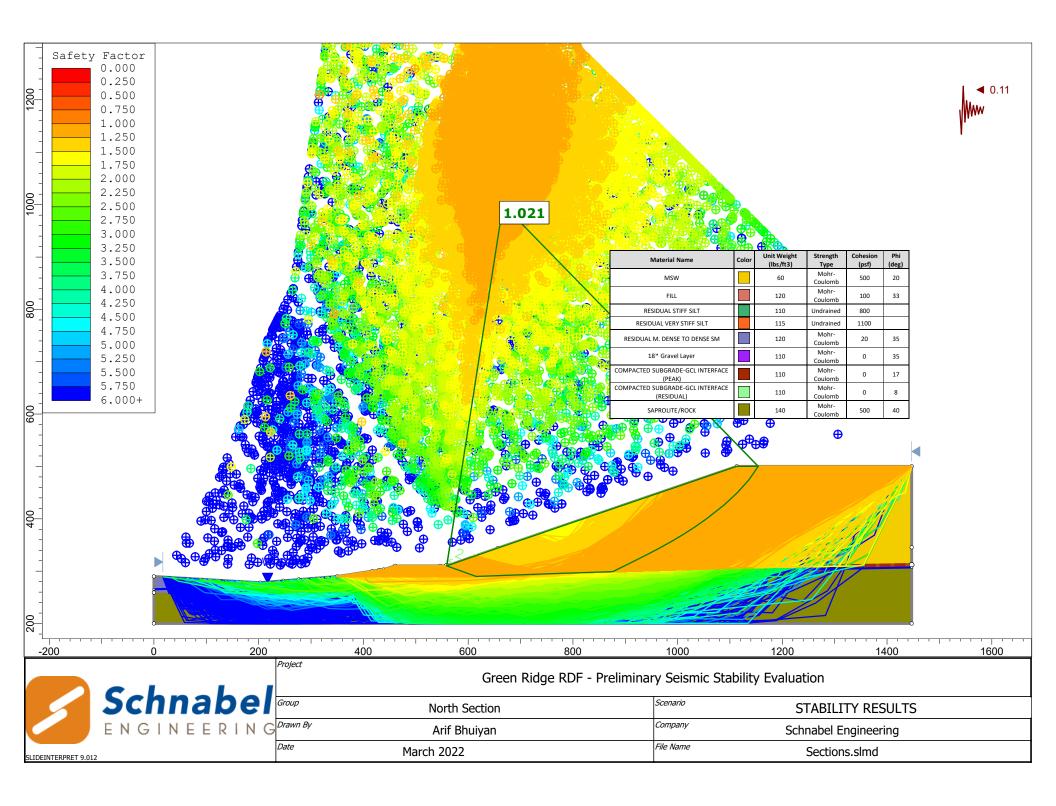
where:

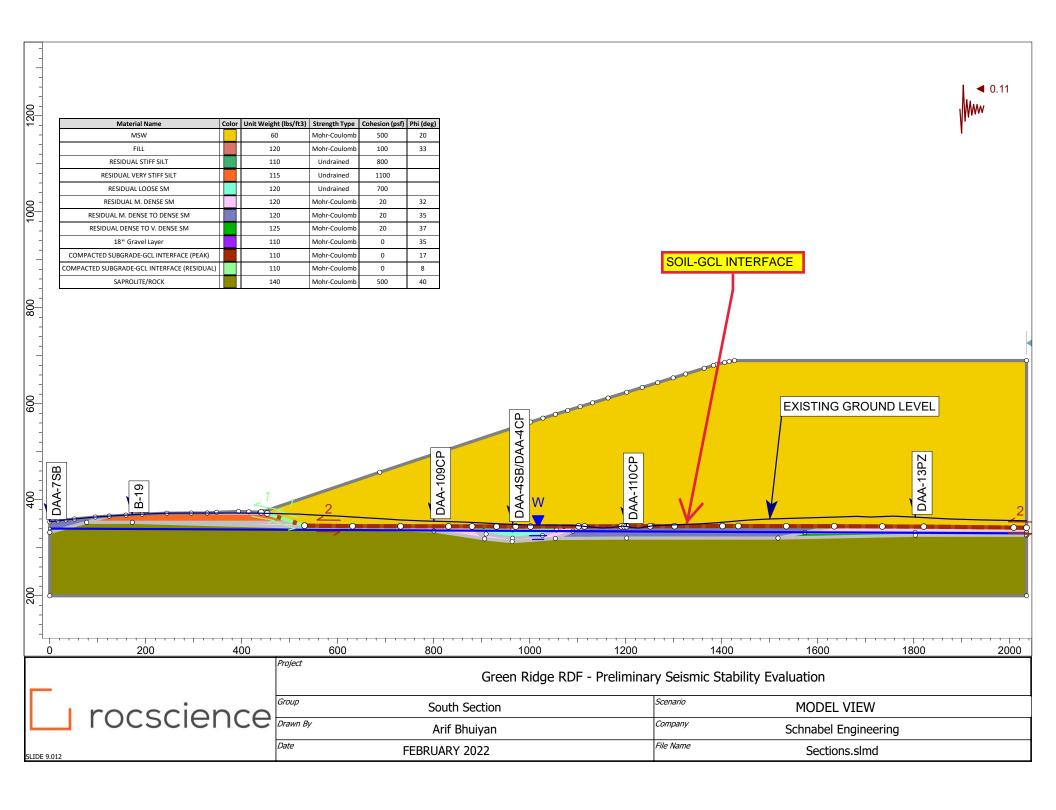
 $F_L = 1$ - F.S. when F.S. less than 1 $F_L = 0$ when F.S. greater than 1 z depth of measument in meters

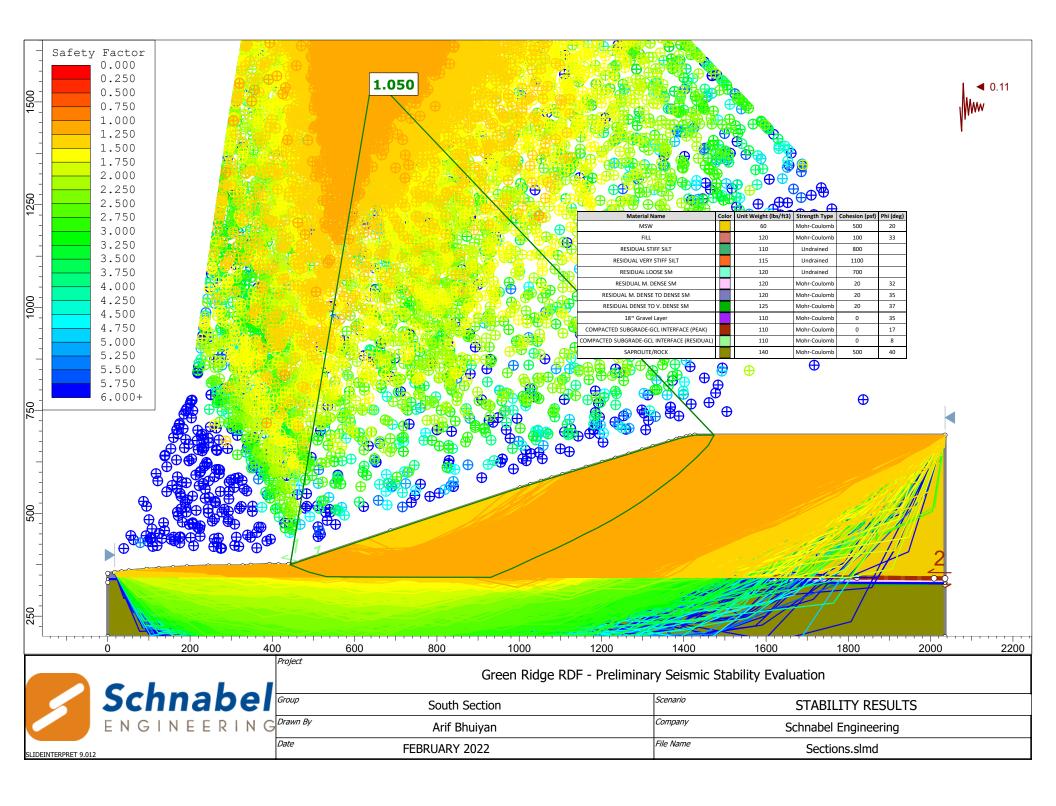
Values of LPI range between zero (0) when no test point is characterized as liquefiable and 100 when all points are characterized as susceptible to liquefaction. Iwasaki proposed four (4) discrete categories based on the numeric value of LPI:

LPI = 0 : Liquefaction risk is very low
 0 < LPI <= 5 : Liquefaction risk is low
 5 < LPI <= 15 : Liquefaction risk is high
 LPI > 15 : Liquefaction risk is very high




Graphical presentation of the LPI calculation procedure


References

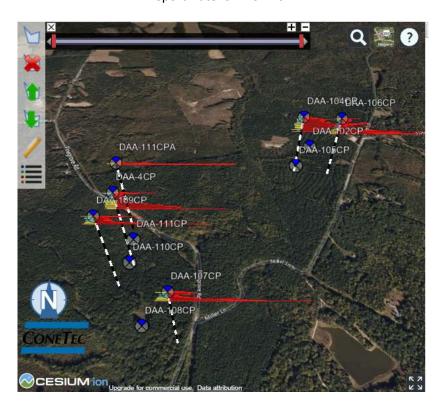

- Lunne, T., Robertson, P.K., and Powell, J.J.M 1997. Cone penetration testing in geotechnical practice, E & FN Spon Routledge, 352 p, ISBN 0-7514-0393-8.
- Boulanger, R.W. and Idriss, I. M., 2007. Evaluation of Cyclic Softening in Silts and Clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering June, Vol. 133, No. 6 pp 641 -652
- Boulanger, R.W. and Idriss, I. M., 2014. CPT AND SPT BASED LIQUEFACTION TRIGGERING PROCEDURES. DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT DAVIS
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Robertson, P.K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27 (1), 151 -8.
- Robertson, P.K. and Wride, C.E., 1998. Cyclic Liquefaction and its Evaluation based on the CPT Canadian Geotechnical Journal, 1998, Vol. 35, August.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes , M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861 -871
- Pradel, D., 1998, Procedure to Evaluate Earthquake -Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- Iwasaki, T., 1986, Soil liquefaction studies in Japan: state -of-the-art, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1, 2-70
- Papathanassiou G., 2008, LPI-based approach for calibrating the severity of liquefaction -induced failures and for assessing the probability of liquefaction surface evidence, Eng. Geol. 96:94 –104
- P.K. Robertson, 2009, Interpretation of Cone Penetration Tests a unified approach., Canadian Geotechnical Journal, Vol. 46, No. 11, pp 1337-1355
- P.K. Robertson, 2009. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering from case history to practice, IS-Tokyo, June 2009
- Robertson, P.K. and Lisheng, S., 2010, "Estimation of seismic compression in dry soils using the CPT" FIFTH INTERNATIONAL
 CONFERENCE ON RECENT ADVANCES IN GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS, Symposium in
 honor of professor I. M. Idriss, SAN diego, CA
- R. E. S. Moss, R. B. Seed, R. E. Kayen, J. P. Stewart, A. Der Kiureghian, K. O. Cetin, CPT -Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 8, August 1, 2006
- I. M. Idriss and R. W. Boulanger, 2008. Soil liquefaction during earthquakes, Earthquake Engineering Research Institute MNO-12
- Jonathan D. Bray & Jorge Macedo, Department of Civil & Environmental Engineering, Univ. of California, Berkeley, CA, USA, Simplified procedure for estimating liquefaction -induced building settlement, Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 201

ATTACHMENT 2 - PRELIMINARY SEISMIC STABILITY EVALUATION (NORTH AND SOUTH SECTIONS)

ATTACHMENT 3 - SUBSURFACE EXPLORATION DATA PROVIDED BY DAA

- CPT Sounding Report by Conetec
- Log of DAA 2021 Boring, DAA-112pz
- Logs of DAA Borings from 2019
- Laboratory Test Summary from DAA's 2019 Exploration
- Logs of KBJW Borings from 2017

PRESENTATION OF SITE INVESTIGATION RESULTS


Green Ridge Landfill

Prepared for:

Draper Aden Associates

ConeTec Job No: 21-54-23203

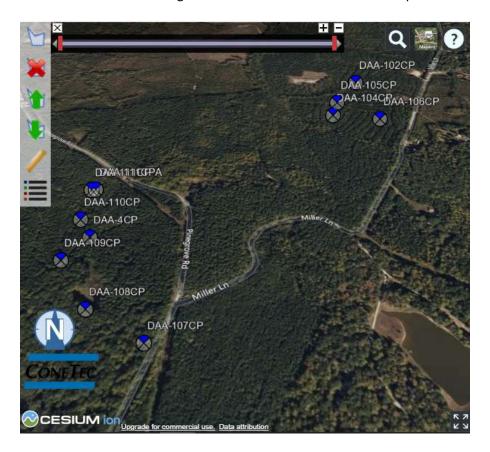
Project Start Date: 25-Oct-2021 Project End Date: 26-Oct-2021 Report Date: 01-Nov-2021

Prepared by:

ConeTec Inc. 606-S Roxbury Industrial Center Charles City, VA 23030

Tel: (804) 966-5696 Fax: (804) 966-5697 Toll Free: (800) 504-1116

ConeTecVA@conetec.com www.conetec.com www.conetecdataservices.com


Introduction

The enclosed report presents the results of the site investigation program conducted by ConeTec Inc. for Draper Aden Associates at Green Ridge Landfill in Cumberland, VA. The program consisted of six cone penetration tests (CPTu) and five seismic cone penetration tests (SCPTu) at locations selected and numbered under the direction of Draper Aden Associates personnel. The purpose of the program was to evaluate existing site conditions. Please note that this report, which also includes all accompanying data, are subject to the 3rd Party Disclaimer and Client Disclaimer that follow in the 'Limitations' section of this report.

Project Information

Project				
Client	Draper Aden Associates			
Project	Green Ridge Landfill			
ConeTec project number	21-54-23203			

An aerial overview from CESIUM including the CPTu and SCPTu test locations is presented below.

Rig Description	Deployment System	Test Type
15-ton Track Rig	Integrated Ramset	CPTu, SCPTu

Coordinates					
Test Type	EPSG Number				
CPTu, SCPTu	Handheld GPS	4326			

Cone Penetrometers Used for this Project							
	Cone Number	Cross	Sleeve	Tip	Sleeve	Pore Pressure	
Cone Description		Sectional	Area	Capacity	Capacity	Capacity	
		Area (cm²)	(cm²)	(bar)	(bar)	(bar)	
556:T1500F15U35	EC556	15	225	1500	15	35	
Cone EC556 was used for all CPT sounding.							

Cone Penetration Test (CPTu)				
Depth reference	Depths are referenced to the existing ground surface at the time of each			
	test.			
Tip and sleeve data offset	0.1 meter			
	This has been accounted for in the CPT data files.			
	 Advanced plots with Ic, Su, phi and N1(60) 			
Additional plots	Seismic Cone Penetration Test Plots, Tabular Results, and Wave			
Additional plots	Traces			
	Soil Behavior Type (SBT) scatter plots			

Calculated Geotechnical Parameter Tables				
Additional information	The Normalized Soil Behavior Type Chart based on Q_{tn} (SBT Q_{tn}) (Robertson, 2009) was used to classify the soil for this project. A detailed set of calculated CPTu parameters have been generated and are provided in Excel format files in the release folder. The CPTu parameter calculations are based on values of corrected tip resistance (q_t) sleeve friction (f_s) and pore pressure (u_2). Effective stresses are calculated based on unit weights that have been assigned to the individual soil behavior type zones and the assumed equilibrium pore pressure profile. For calculating undrained shear strength based on pore pressure ($S_u(N_{\Delta u})$) and undrained shear strength based on cone tip resistance ($S_u(N_{kt})$), an $N_{\Delta u}$ value of 6 and an N_{kt} value of 15 were selected.			

Limitations

3rd Party Disclaimer

This report titled "Green Ridge Landfill", referred to as the ("Report"), was prepared by ConeTec for Draper Aden Associates. The Report is confidential and may not be distributed to or relied upon by any third parties without the express written consent of ConeTec. Any third parties gaining access to the Report do not acquire any rights as a result of such access. Any use which a third party makes of the Report, or any reliance on or decisions made based on it, are the responsibility of such third parties. ConeTec accepts no responsibility for loss, damage and/or expense, if any, suffered by any third parties as a result of decisions made, or actions taken or not taken, which are in any way based on, or related to, the Report or any portion(s) thereof.

Client Disclaimer

ConeTec was retained by Draper Aden Associates to collect and provide the raw data ("Data") which is included in this report titled "Green Ridge Landfill", which is referred to as the ("Report"). ConeTec has collected and reported the Data in accordance with current industry standards. No other warranty, express or implied, with respect to the Data is made by ConeTec. In order to properly understand the Data included in the Report, reference must be made to the documents accompanying and other sources referenced in the Report in their entirety. Any analysis, interpretation, judgment, calculations and/or geotechnical parameters (collectively "Interpretations") included in the Report, including those based on the Data, are outside the scope of ConeTec's retainer and are included in the Report as a courtesy only. Other than the Data, the contents of the Report (including any Interpretations) should not be relied upon in any fashion without independent verification and ConeTec is in no way responsible for any loss, damage or expense resulting from the use of, and/or reliance on, such material by any party.

Cone penetration tests (CPTu) are conducted using an integrated electronic piezocone penetrometer and data acquisition system manufactured by Adara Systems Ltd., a subsidiary of ConeTec.

ConeTec's piezocone penetrometers are compression type designs in which the tip and friction sleeve load cells are independent and have separate load capacities. The piezocones use strain gauged load cells for tip and sleeve friction and a strain gauged diaphragm type transducer for recording pore pressure. The piezocones also have a platinum resistive temperature device (RTD) for monitoring the temperature of the sensors, an accelerometer type dual axis inclinometer and two geophone sensors for recording seismic signals. All signals are amplified and measured with minimum sixteen-bit resolution down hole within the cone body, and the signals are sent to the surface using a high bandwidth, error corrected digital interface through a shielded cable.

ConeTec penetrometers are manufactured with various tip, friction and pore pressure capacities in both 10 cm² and 15 cm² tip base area configurations in order to maximize signal resolution for various soil conditions. The specific piezocone used for each test is described in the CPT summary table presented in the first appendix. The 15 cm² penetrometers do not require friction reducers as they have a diameter larger than the deployment rods. The 10 cm² piezocones use a friction reducer consisting of a rod adapter extension behind the main cone body with an enlarged cross sectional area (typically 44 millimeters diameter over a length of 32 millimeters with tapered leading and trailing edges) located at a distance of 585 millimeters above the cone tip.

The penetrometers are designed with equal end area friction sleeves, a net end area ratio of 0.8 and cone tips with a 60 degree apex angle.

All ConeTec piezocones can record pore pressure at various locations. Unless otherwise noted, the pore pressure filter is located directly behind the cone tip in the " u_2 " position (ASTM Type 2). The filter is six millimeters thick, made of porous plastic (polyethylene) having an average pore size of 125 microns (90-160 microns). The function of the filter is to allow rapid movements of extremely small volumes of water needed to activate the pressure transducer while preventing soil ingress or blockage.

The piezocone penetrometers are manufactured with dimensions, tolerances and sensor characteristics that are in general accordance with the current ASTM D5778 standard. ConeTec's calibration criteria also meets or exceeds those of the current ASTM D5778 standard. An illustration of the piezocone penetrometer is presented in Figure CPTu.

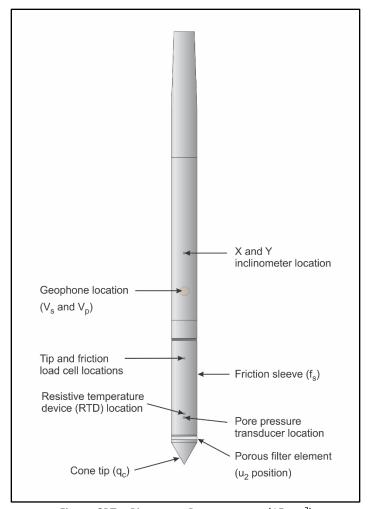


Figure CPTu. Piezocone Penetrometer (15 cm²)

The ConeTec data acquisition systems consist of a Windows based computer and a signal interface box and power supply. The signal interface combines depth increment signals, seismic trigger signals and the downhole digital data. This combined data is then sent to the Windows based computer for collection and presentation. The data is recorded at fixed depth increments using a depth wheel attached to the push cylinders or by using a spring loaded rubber depth wheel that is held against the cone rods. The typical recording interval is 2.5 centimeters; custom recording intervals are possible.

The system displays the CPTu data in real time and records the following parameters to a storage media during penetration:

- Depth
- Uncorrected tip resistance (q_c)
- Sleeve friction (f_s)
- Dynamic pore pressure (u)
- Additional sensors such as resistivity, passive gamma, ultra violet induced fluorescence, if applicable

All testing is performed in accordance to ConeTec's CPTu operating procedures which are in general accordance with the current ASTM D5778 standard.

Prior to the start of a CPTu sounding a suitable cone is selected, the cone and data acquisition system are powered on, the pore pressure system is saturated with silicone oil and the baseline readings are recorded with the cone hanging freely in a vertical position.

The CPTu is conducted at a steady rate of two centimeters per second, within acceptable tolerances. Typically one meter length rods with an outer diameter of 1.5 inches (38.1 millimeters) are added to advance the cone to the sounding termination depth. After cone retraction final baselines are recorded.

Additional information pertaining to ConeTec's cone penetration testing procedures:

- Each filter is saturated in silicone oil under vacuum pressure prior to use
- Baseline readings are compared to previous readings
- Soundings are terminated at the client's target depth or at a depth where an obstruction is encountered, excessive rod flex occurs, excessive inclination occurs, equipment damage is likely to take place, or a dangerous working environment arises
- Differences between initial and final baselines are calculated to ensure zero load offsets have not occurred and to ensure compliance with ASTM standards

The interpretation of piezocone data for this report is based on the corrected tip resistance (q_t), sleeve friction (f_s) and pore water pressure (u). The interpretation of soil type is based on the correlations developed by Robertson et al. (1986) and Robertson (1990, 2009). It should be noted that it is not always possible to accurately identify a soil behavior type based on these parameters. In these situations, experience, judgment and an assessment of other parameters may be used to infer soil behavior type.

The recorded tip resistance (q_c) is the total force acting on the piezocone tip divided by its base area. The tip resistance is corrected for pore pressure effects and termed corrected tip resistance (q_t) according to the following expression presented in Robertson et al. (1986):

$$q_t = q_c + (1-a) \cdot u_2$$

where: q_t is the corrected tip resistance

q_c is the recorded tip resistance

 u_2 is the recorded dynamic pore pressure behind the tip (u_2 position)

a is the Net Area Ratio for the piezocone (0.8 for ConeTec probes)

The sleeve friction (f_s) is the frictional force on the sleeve divided by its surface area. As all ConeTec piezocones have equal end area friction sleeves, pore pressure corrections to the sleeve data are not required.

The dynamic pore pressure (u) is a measure of the pore pressures generated during cone penetration. To record equilibrium pore pressure, the penetration must be stopped to allow the dynamic pore pressures to stabilize. The rate at which this occurs is predominantly a function of the permeability of the soil and the diameter of the cone.

The friction ratio (R_f) is a calculated parameter. It is defined as the ratio of sleeve friction to the tip resistance expressed as a percentage. Generally, saturated cohesive soils have low tip resistance, high friction ratios and generate large excess pore water pressures. Cohesionless soils have higher tip resistances, lower friction ratios and do not generate significant excess pore water pressure.

A summary of the CPTu soundings along with test details and individual plots are provided in the appendices. A set of files with calculated geotechnical parameters were generated for each sounding based on published correlations and are provided in Excel format in the data release folder. Information regarding the methods used is also included in the data release folder.

For additional information on CPTu interpretations and calculated geotechnical parameters, refer to Robertson et al. (1986), Lunne et al. (1997), Robertson (2009), Mayne (2013, 2014) and Mayne and Peuchen (2012).

Shear wave velocity (Vs) testing is performed in conjunction with the piezocone penetration test (SCPTu) in order to collect interval velocities. For some projects seismic compression wave velocity (Vp) testing is also performed.

ConeTec's piezocone penetrometers are manufactured with one horizontally active geophone (28 hertz) and one vertically active geophone (28 hertz). Both geophones are rigidly mounted in the body of the cone penetrometer, 0.2 meters behind the cone tip. The vertically mounted geophone is more sensitive to compression waves.

Shear waves are typically generated by using an impact hammer horizontally striking a beam that is held in place by a normal load. In some instances, an auger source or an imbedded impulsive source may be used for both shear waves and compression waves. The hammer and beam act as a contact trigger that initiates the recording of the seismic wave traces. For impulsive devices an accelerometer trigger may be used. The traces are recorded in the memory of the cone using a fast analog to digital converter. The seismic trace is then transmitted digitally uphole to a Windows based computer through a signal interface box for recording and analysis. An illustration of the shear wave testing configuration is presented in Figure SCPTu-1.

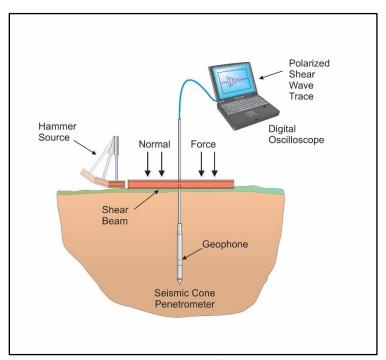


Figure SCPTu-1. Illustration of the SCPTu system

All testing is performed in accordance to ConeTec's SCPTu operating procedures which are in general accordance with the current ASTM D5778 and ASTM D7400 standards.

Prior to the start of a SCPTu sounding, the procedures described in the Cone Penetration Test section are followed. In addition, the active axis of the geophone is aligned parallel to the beam (or source) and the horizontal offset between the cone and the source is measured and recorded.

Prior to recording seismic waves at each test depth, cone penetration is stopped and the rods are decoupled from the rig to avoid transmission of rig energy down the rods. Typically, five wave traces for

each orientation are recorded for quality control and uncertainty analysis purposes. After reviewing wave traces for consistency the cone is pushed to the next test depth (typically one meter intervals or as requested by the client). Figure SCPTu-2 presents an illustration of a SCPTu test.

For additional information on seismic cone penetration testing refer to Robertson et al. (1986).

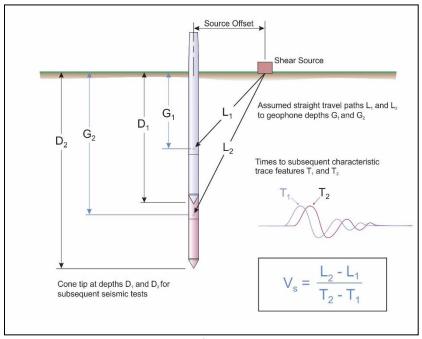


Figure SCPTu-2. Illustration of a seismic cone penetration test

Calculation of the interval velocities are performed by visually picking a common feature (e.g. the first characteristic peak, trough, or crossover) on all of the recorded wave sets and taking the difference in ray path divided by the time difference between subsequent features. Ray path is defined as the straight line distance from the seismic source to the geophone, accounting for beam offset, source depth and geophone offset from the cone tip.

For all SCPTu soundings that have achieved a depth of at least 100 feet (30 meters), the average shear wave velocity to a depth of 100 feet (\overline{v}_s) has been calculated and provided for all applicable soundings using the following equation presented in ASCE (2010).

$$\overline{v}_s = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{v_{si}}}$$

where: \overline{v}_s = average shear wave velocity ft/s (m/s)

d_i = the thickness of any layer between 0 and 100 ft (30 m)

 v_{si} = the shear wave velocity in ft/s (m/s)

 $\sum_{i=1}^{n} d_i$ = the total thickness of all layers between 0 and 100 ft (30 m)

Average shear wave velocity, \overline{v}_s is also referenced to V_{s100} or V_{s30} .

The layer travel times refers to the travel times propagating in the vertical direction, not the measured travel times from an offset source.

Tabular results and SCPTu plots are presented in the relevant appendix.

The cone penetration test is halted at specific depths to carry out pore pressure dissipation (PPD) tests, shown in Figure PPD-1. For each dissipation test the cone and rods are decoupled from the rig and the data acquisition system measures and records the variation of the pore pressure (u) with time (t).

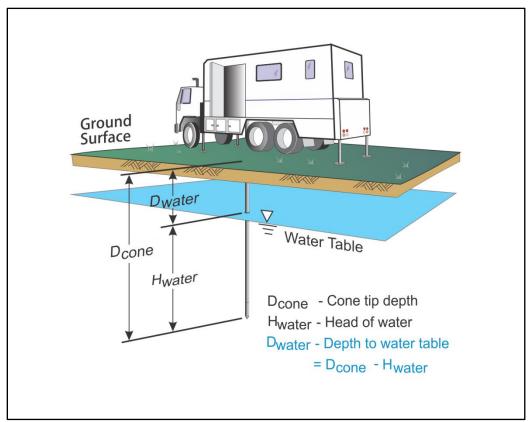


Figure PPD-1. Pore pressure dissipation test setup

Pore pressure dissipation data can be interpreted to provide estimates of ground water conditions, permeability, consolidation characteristics and soil behavior.

The typical shapes of dissipation curves shown in Figure PPD-2 are very useful in assessing soil type, drainage, in situ pore pressure and soil properties. A flat curve that stabilizes quickly is typical of a freely draining sand. Undrained soils such as clays will typically show positive excess pore pressure and have long dissipation times. Dilative soils will often exhibit dynamic pore pressures below equilibrium that then rise over time. Overconsolidated fine-grained soils will often exhibit an initial dilatory response where there is an initial rise in pore pressure before reaching a peak and dissipating.

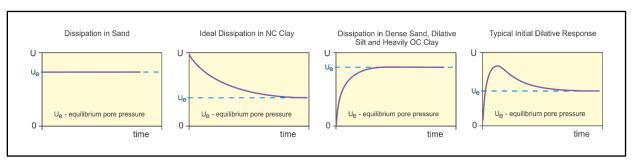


Figure PPD-2. Pore pressure dissipation curve examples

In order to interpret the equilibrium pore pressure (u_{eq}) and the apparent phreatic surface, the pore pressure should be monitored until such time as there is no variation in pore pressure with time as shown for each curve in Figure PPD-2.

In fine grained deposits the point at which 100% of the excess pore pressure has dissipated is known as t_{100} . In some cases this can take an excessive amount of time and it may be impractical to take the dissipation to t_{100} . A theoretical analysis of pore pressure dissipations by Teh and Houlsby (1991) showed that a single curve relating degree of dissipation versus theoretical time factor (T*) may be used to calculate the coefficient of consolidation (c_h) at various degrees of dissipation resulting in the expression for c_h shown below.

$$c_h = \frac{T^* \cdot a^2 \cdot \sqrt{I_r}}{t}$$

Where:

T* is the dimensionless time factor (Table Time Factor)

a is the radius of the cone

I_r is the rigidity index

t is the time at the degree of consolidation

Table Time Factor. T* versus degree of dissipation (Teh and Houlsby (1991))

		terede degree et diesepation (terraina riodiese) (
Degree of Dissipation (%)	20	30	40	50	60	70	80
T* (u ₂)	0.038	0.078	0.142	0.245	0.439	0.804	1.60

The coefficient of consolidation is typically analyzed using the time (t_{50}) corresponding to a degree of dissipation of 50% (u_{50}). In order to determine t_{50} , dissipation tests must be taken to a pressure less than u_{50} . The u_{50} value is half way between the initial maximum pore pressure and the equilibrium pore pressure value, known as u_{100} . To estimate u_{50} , both the initial maximum pore pressure and u_{100} must be known or estimated. Other degrees of dissipations may be considered, particularly for extremely long dissipations.

At any specific degree of dissipation the equilibrium pore pressure (u at t_{100}) must be estimated at the depth of interest. The equilibrium value may be determined from one or more sources such as measuring the value directly (u_{100}), estimating it from other dissipations in the same profile, estimating the phreatic surface and assuming hydrostatic conditions, from nearby soundings, from client provided information, from site observations and/or past experience, or from other site instrumentation.

For calculations of c_h (Teh and Houlsby (1991)), t_{50} values are estimated from the corresponding pore pressure dissipation curve and a rigidity index (I_r) is assumed. For curves having an initial dilatory response in which an initial rise in pore pressure occurs before reaching a peak, the relative time from the peak value is used in determining t_{50} . In cases where the time to peak is excessive, t_{50} values are not calculated.

Due to possible inherent uncertainties in estimating I_r , the equilibrium pore pressure and the effect of an initial dilatory response on calculating t_{50} , other methods should be applied to confirm the results for c_h .

Additional published methods for estimating the coefficient of consolidation from a piezocone test are described in Burns and Mayne (1998, 2002), Jones and Van Zyl (1981), Robertson et al. (1992) and Sully et al. (1999).

A summary of the pore pressure dissipation tests and dissipation plots are presented in the relevant appendix.

American Society of Civil Engineers (ASCE), 2010, "Minimum Design Loads for Buildings and Other Structures", Standard ASCE/SEI 7-10, American Society of Civil Engineers, ISBN 978-0-7844-1085-1, Reston, Virginia. DOI: 10.1061/9780784412916.

ASTM D5778-12, 2012, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM International, West Conshohocken, PA. DOI: 10.1520/D5778-12.

ASTM D7400/D7400M-19, 2019, "Standard Test Methods for Downhole Seismic Testing", ASTM International, West Conshohocken, PA. DOI: 10.1520/D7400_D7400M-19.

Burns, S.E. and Mayne, P.W., 1998, "Monotonic and dilatory pore pressure decay during piezocone tests", Canadian Geotechnical Journal 26 (4): 1063-1073. DOI: 1063-1073/T98-062.

Burns, S.E. and Mayne, P.W., 2002, "Analytical cavity expansion-critical state model cone dissipation in fine-grained soils", Soils & Foundations, Vol. 42(2): 131-137.

Jones, G.A. and Van Zyl, D.J.A., 1981, "The piezometer probe: a useful investigation tool", Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Vol. 3, Stockholm: 489-495.

Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

Mayne, P.W., 2013, "Evaluating yield stress of soils from laboratory consolidation and in-situ cone penetration tests", Sound Geotechnical Research to Practice (Holtz Volume) GSP 230, ASCE, Reston/VA: 406-420. DOI: 10.1061/9780784412770.027.

Mayne, P.W. and Peuchen, J., 2012, "Unit weight trends with cone resistance in soft to firm clays", Geotechnical and Geophysical Site Characterization 4, Vol. 1 (Proc. ISC-4, Pernambuco), CRC Press, London: 903-910.

Mayne, P.W., 2014, "Interpretation of geotechnical parameters from seismic piezocone tests", CPT'14 Keynote Address, Las Vegas, NV, May 2014.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.

Robertson, P.K., Campanella, R.G., Gillespie D and Rice, A., 1986, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8: 791-803. DOI: 10.1061/(ASCE)0733-9410(1986)112:8(791).

Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27: 151-158. DOI: 10.1139/T90-014.

Robertson, P.K., Sully, J.P., Woeller, D.J., Lunne, T., Powell, J.J.M. and Gillespie, D.G., 1992, "Estimating coefficient of consolidation from piezocone tests", Canadian Geotechnical Journal, 29(4): 539-550. DOI: 10.1139/T92-061.

Robertson, P.K., 2009, "Interpretation of cone penetration tests – a unified approach", Canadian Geotechnical Journal, Volume 46: 1337-1355. DOI: 10.1139/T09-065.

Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J., 1999, "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils", Canadian Geotechnical Journal, 36(2): 369-381. DOI: 10.1139/T98-105.

Teh, C.I., and Houlsby, G.T., 1991, "An analytical study of the cone penetration test in clay", Geotechnique, 41(1): 17-34. DOI: 10.1680/geot.1991.41.1.17.

The appendices listed below are included in the report:

- Cone Penetration Test Summary and Standard Cone Penetration Test Plots
- Advanced Cone Penetration Test Plots with Su(Nkt), Phi and N(60)Ic
- Soil Behavior Type (SBT) Scatter Plots
- Seismic Cone Penetration Test Plots
- Seismic Cone Penetration Test Tabular Results
- Seismic Cone Penetration Test Wave Traces
- Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Cone Penetration Test Summary and Standard Cone Penetration Test Plots

 Job No:
 21-54-23203

 Client:
 Draper Aden

Project: Green Ridge Landfill

 Start Date:
 25-Oct-2021

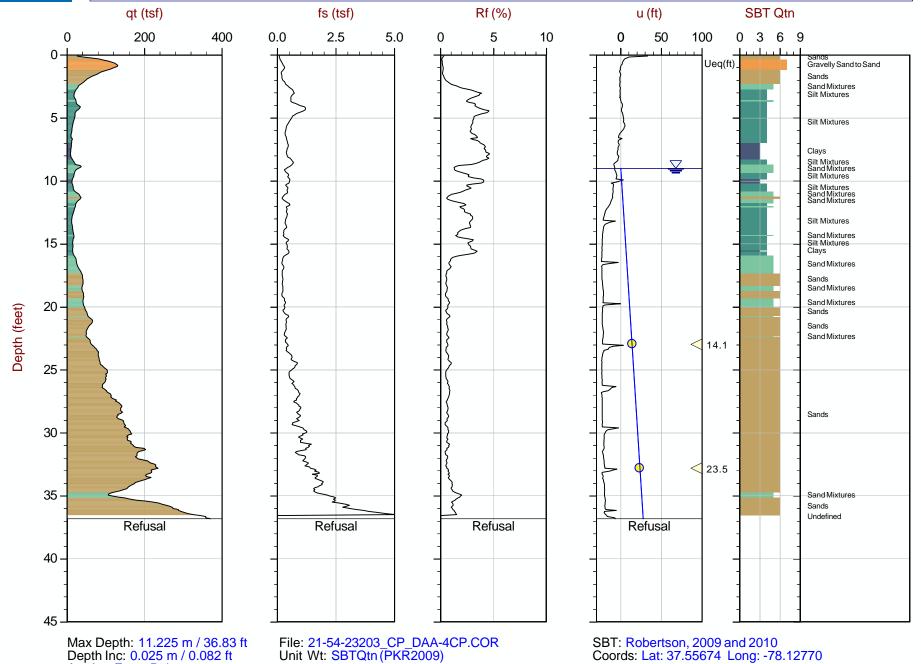
 End Date:
 26-Oct-2021

	CONE PENETRATION TEST SUMMARY								
Sounding ID	File Name	Date	Cone	Assumed Phreatic Surface ² (ft)	Final Depth (ft)	Shear Wave Velocity Tests	Latitude ¹ (degrees)	Longitude ¹ (degrees)	Note
DAA-4CP	21-54-23203_CP_DAA-4CP.COR	2021-10-25	556:T1500F15U35	9	36.8	12	37.55674	-78.12770	
DAA-102CP	21-54-23203_CP_DAA-102CP.COR	2021-10-26	556:T1500F15U35	9	22.0		37.56434	-78.11861	
DAA-104CP	21-54-23203_CP_DAA-104CP.COR	2021-10-26	556:T1500F15U35	25	39.6		37.56197	-78.12009	
DAA-105CP	21-54-23203_SP_DAA-105CP.COR	2021-10-26	556:T1500F15U35	30	36.1	11	37.56276	-78.11977	
DAA-106CP	21-54-23203_CP_DAA-106CP.COR	2021-10-26	556:T1500F15U35	24	41.7		37.56169	-78.11837	
DAA-107CP	21-54-23203_SP_DAA-107CP.COR	2021-10-25	556:T1500F15U35	21	24.0	7	37.55422	-78.12564	
DAA-108CP	21-54-23203_CP_DAA-108CP.COR	2021-10-25	556:T1500F15U35	22	36.2		37.55489	-78.12712	
DAA-109CP	21-54-23203_SP_DAA-109CP.COR	2021-10-25	556:T1500F15U35	12	19.0	6	37.55608	-78.12819	
DAA-110CP	21-54-23203_SP_DAA-110CP.COR	2021-10-25	556:T1500F15U35	18	23.5	7	37.55731	-78.12816	
DAA-111CP	21-54-23203_SP_DAA-111CP.COR	2021-10-26	556:T1500F15U35		3.9		37.55835	-78.12821	3
DAA-111CPA	21-54-23203_SP_DAA-111CPA.COR	2021-10-26	556:T1500F15U35		2.9		37.55835	-78.12808	3
Totals	11 Soundings				285.8	43			

^{1.} WGS 84 Lat/Long. Coordinates were taken with a handheld GPS and should be considered approximate.

^{2.} The assumed phreatic surface was estimated using representative pore pressure dissipation tests. Hydrostatically increasing pore water pressures with depth were used for interpretation tables.

^{3.} The phreatic surface was deeper then explored.

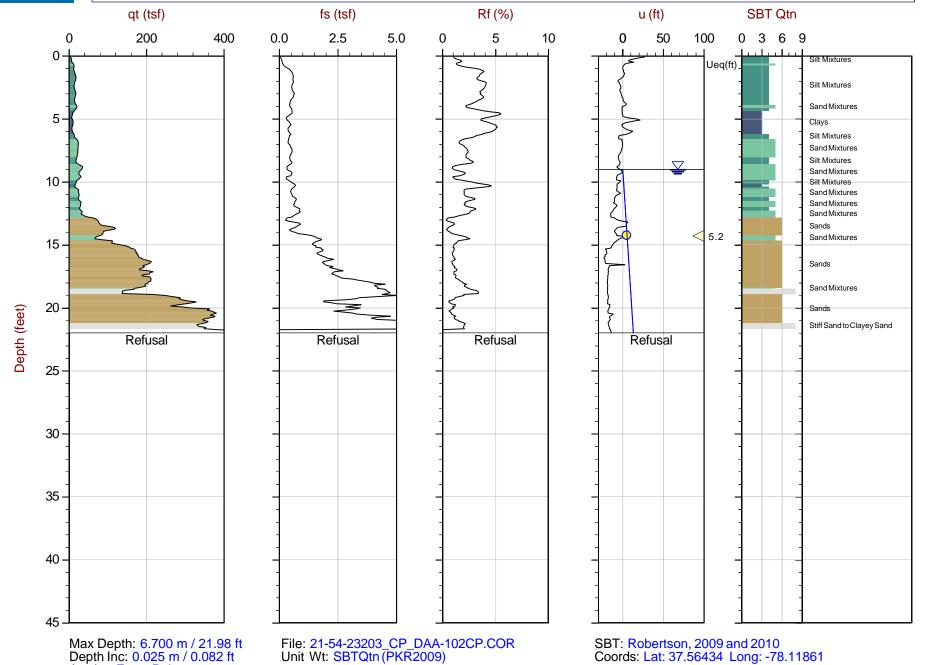

CONETEC | Draper Aden

Avg Int: Every Point

Job No: 21-54-23203 Date: 2021-10-25 15:34

Site: Green Ridge Landfill

Sounding: DAA-4CP Cone: 556:T1500F15U35

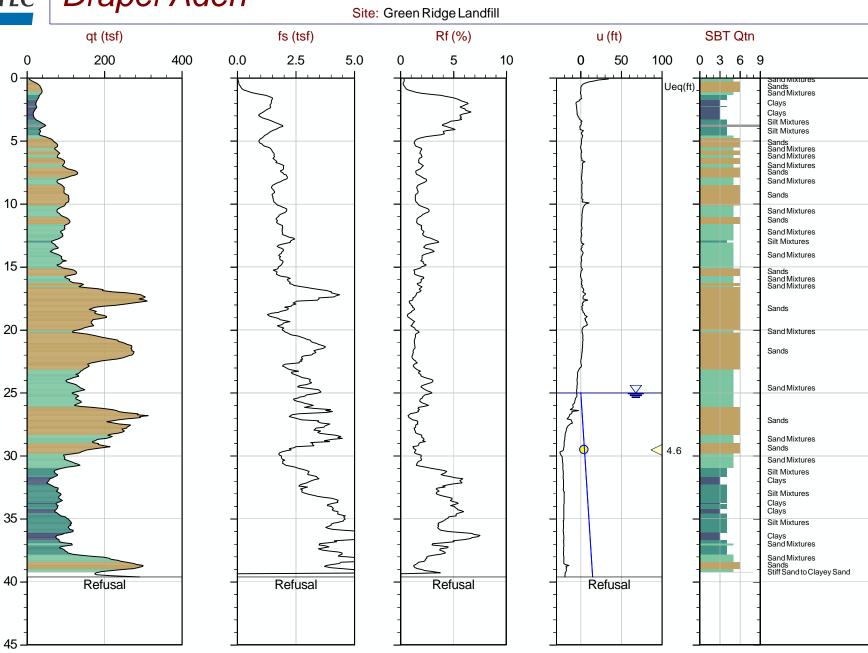

CONETEC Draper Aden

Avg Int: Every Point

Job No: 21-54-23203 Date: 2021-10-26 21:27

Site: Green Ridge Landfill

Sounding: DAA-102CP Cone: 556:T1500F15U35


Hydrostatic Line O Ueq O Assumed Ueq ✓ PPD, Ueq achieved ✓ PPD, Ueq not achieved The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

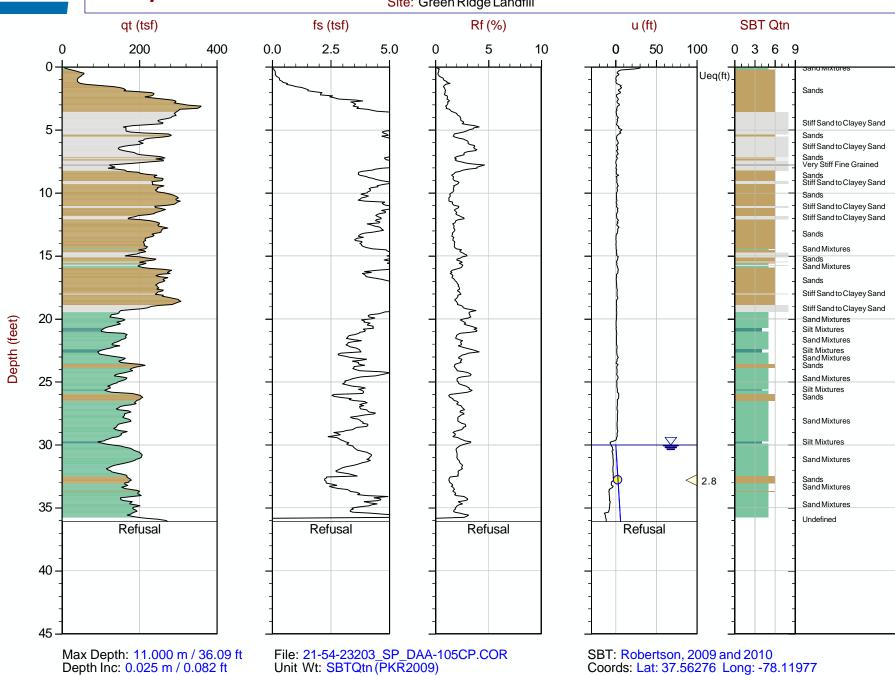
Depth (feet)

CONETEC | Draper Aden

Job No: 21-54-23203 Date: 2021-10-26 16:35 Sounding: DAA-104CP Cone: 556:T1500F15U35

Max Depth: 12.075 m / 39.62 ft Depth Inc: 0.025 m / 0.082 ftAvg Int: Every Point

File: 21-54-23203_CP_DAA-104CP.COR Unit Wt: SBTQtn (PKR2009)

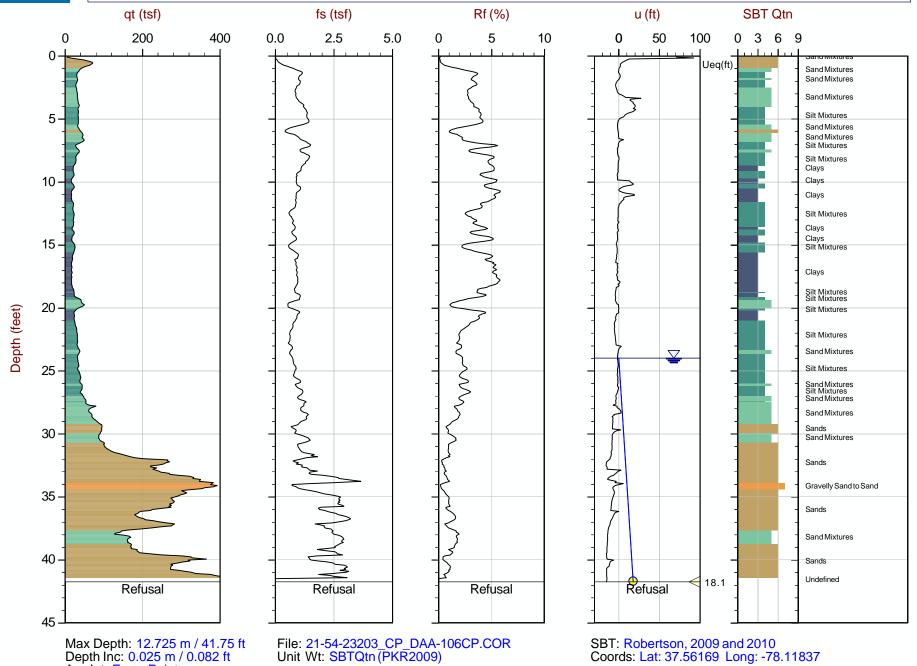

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.56197 Long: -78.12009

Job No: 21-54-23203 Date: 2021-10-26 17:53

Site: Green Ridge Landfill

Sounding: DAA-105CP Cone: 556:T1500F15U35

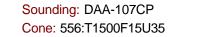
Max Depth: 11.000 m / 36.09 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point Hydrostatic Line O Ueq O Assumed Ueq ✓ PPD, Ueq achieved ✓ PPD, Ueq not achieved

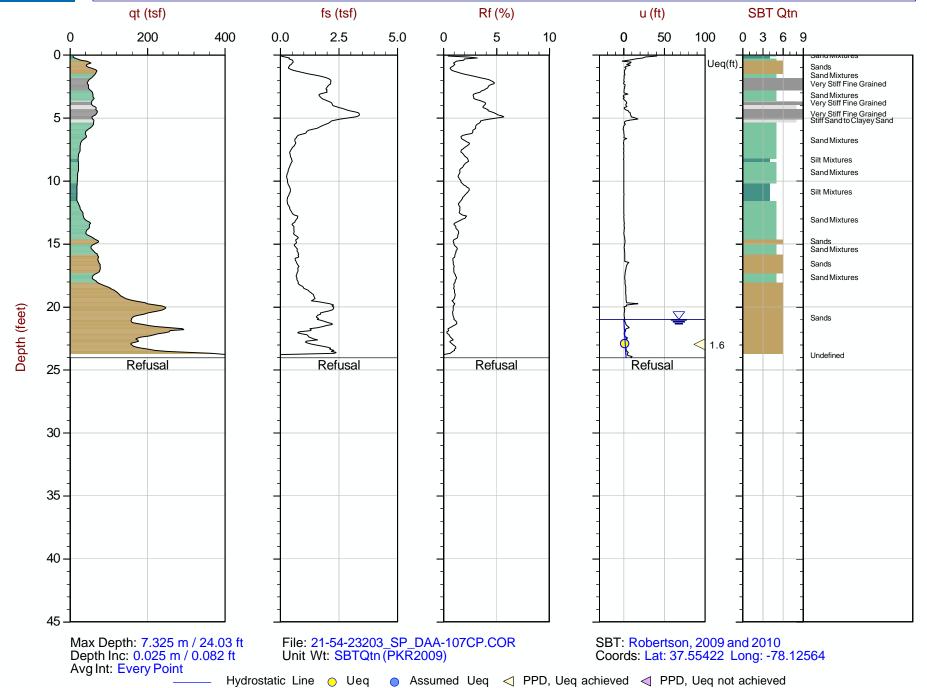

CONETEC | Draper Aden

Avg Int: Every Point

Job No: 21-54-23203 Date: 2021-10-26 20:02

Site: Green Ridge Landfill





CONETEC Draper Aden

Job No: 21-54-23203 Date: 2021-10-25 19:54

Site: Green Ridge Landfill

0

5

10

15

20

25

30

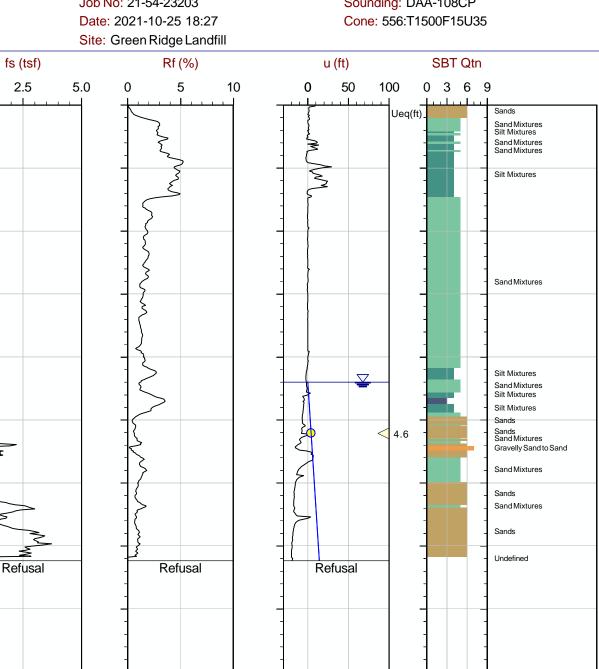
35

40

Depth (feet)

CONETEC Draper Aden

400


0.0

2.5

qt (tsf) 200

Job No: 21-54-23203

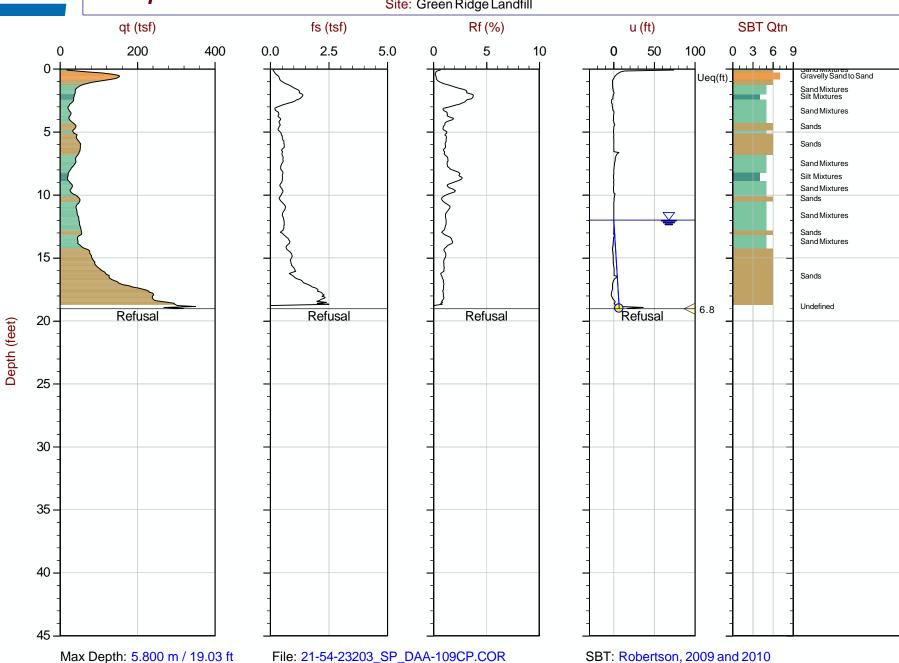
Sounding: DAA-108CP

Max Depth: 11.025 m / 36.17 ft Depth Inc: 0.025 m / 0.082 ftAvg Int: Every Point

Refusal

File: 21-54-23203_CP_DAA-108CP.COR Unit Wt: SBTQtn (PKR2009)

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55489 Long: -78.12712



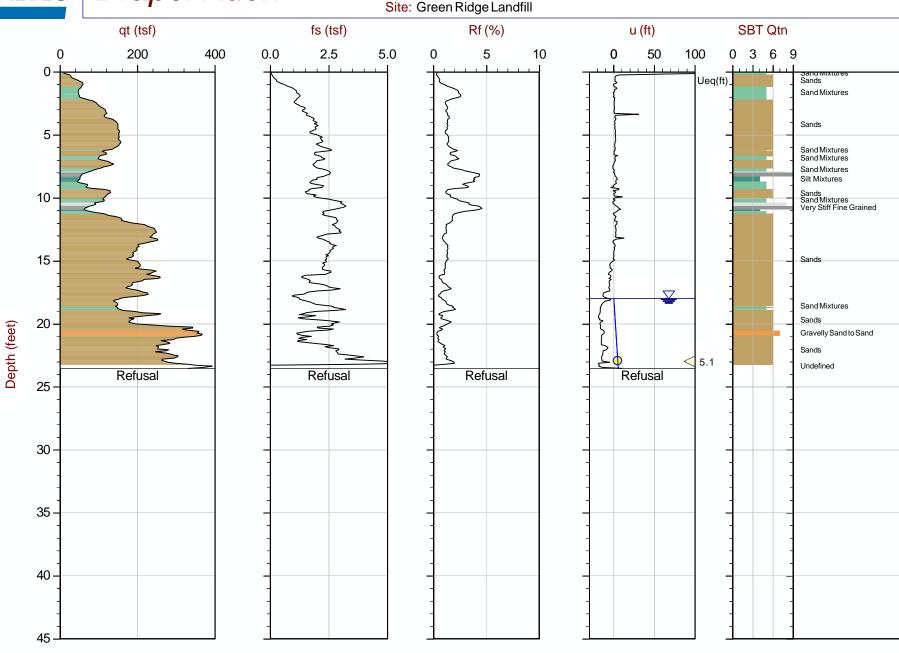
CONETEC | Draper Aden

Job No: 21-54-23203 Date: 2021-10-25 16:56

Site: Green Ridge Landfill

Sounding: DAA-109CP Cone: 556:T1500F15U35

Max Depth: 5.800 m / 19.03 ft Depth Inc: 0.025 m / 0.082 ftSBT: Robertson, 2009 and 2010 Coords: Lat: 37.55608 Long: -78.12819 Unit Wt: SBTQtn (PKR2009) Avg Int: Every Point



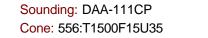
CONETEC | Draper Aden

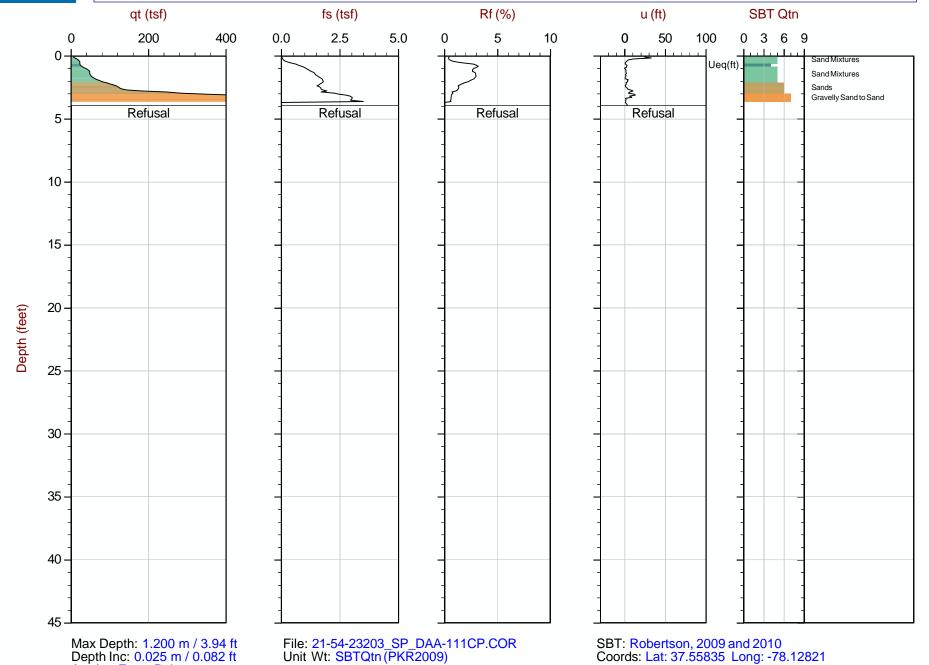
Job No: 21-54-23203 Date: 2021-10-25 13:56

Site: Green Ridge Landfill

Sounding: DAA-110CP Cone: 556:T1500F15U35

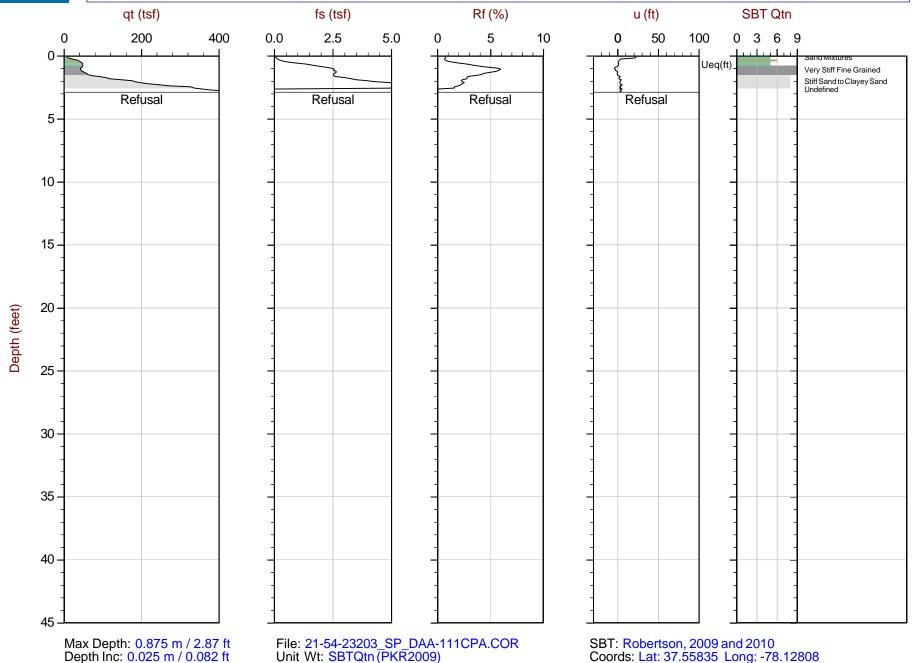
Max Depth: 7.175 m / 23.54 ft Depth Inc: 0.025 m / 0.082 ftAvg Int: Every Point


File: 21-54-23203_SP_DAA-110CP.COR Unit Wt: SBTQtn (PKR2009)


SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55731 Long: -78.12816

Job No: 21-54-23203 Date: 2021-10-26 13:56

Site: Green Ridge Landfill



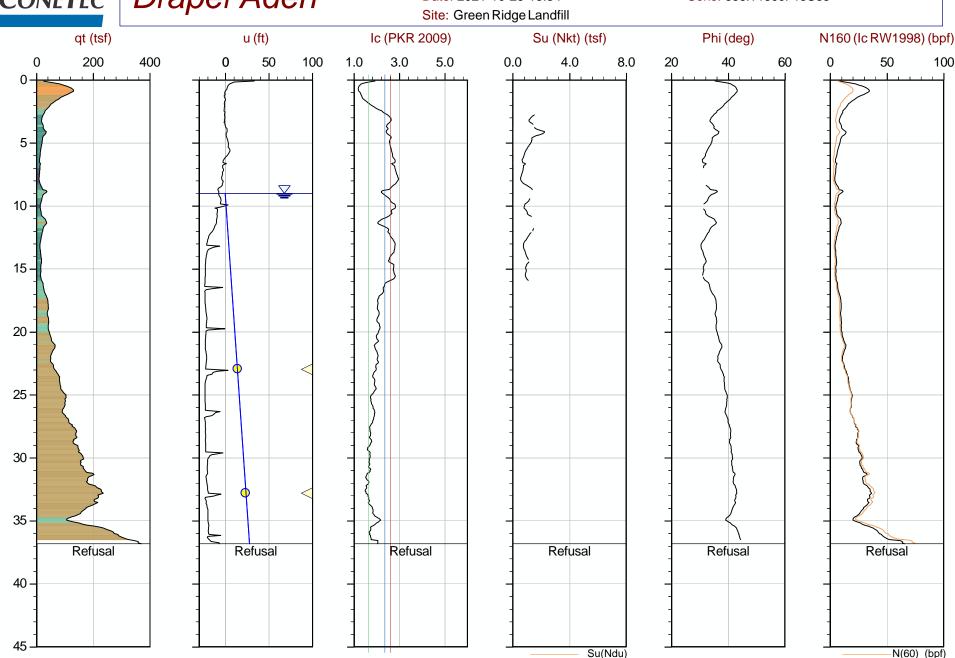
Avg Int: Every Point

Job No: 21-54-23203 Date: 2021-10-26 14:25

Site: Green Ridge Landfill

Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved
The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Advanced Cone Penetration Test Plots with N60, Su(Nkt) and Phi



Depth (feet)

Draper Aden

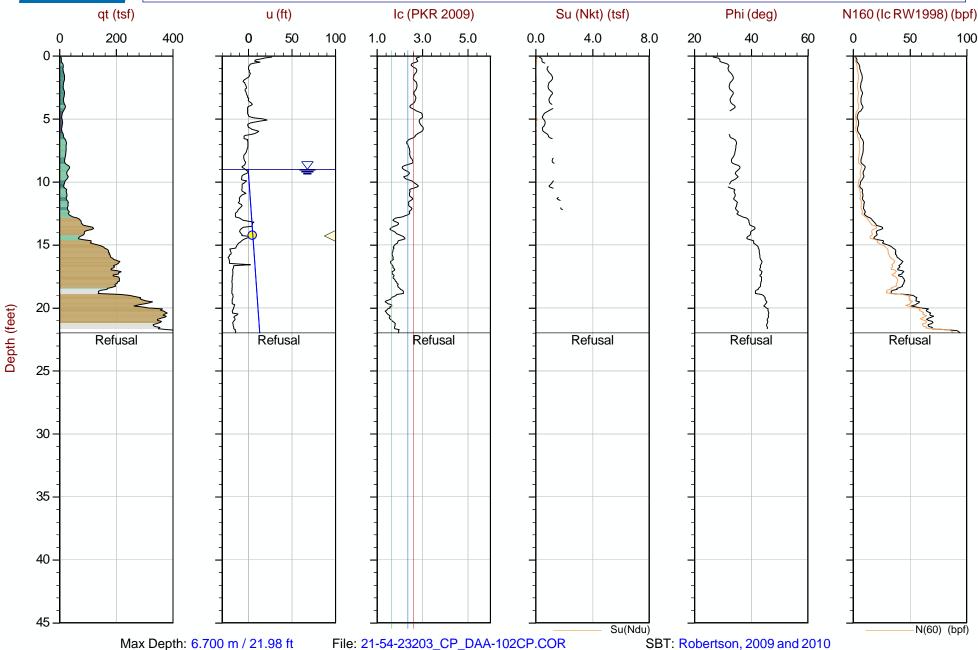
Job No: 21-54-23203 Date: 2021-10-25 15:34 Sounding: DAA-4CP Cone: 556:T1500F15U35

Max Depth: 11.225 m / 36.83 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point File: 21-54-23203_CP_DAA-4CP.COR Unit Wt: SBTQtn (PKR2009)

Su Nkt/Ndu: 15.0 / 6.0

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55674 Long: -78.12770

Hydrostatic Line ○ Ueq ○ Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved

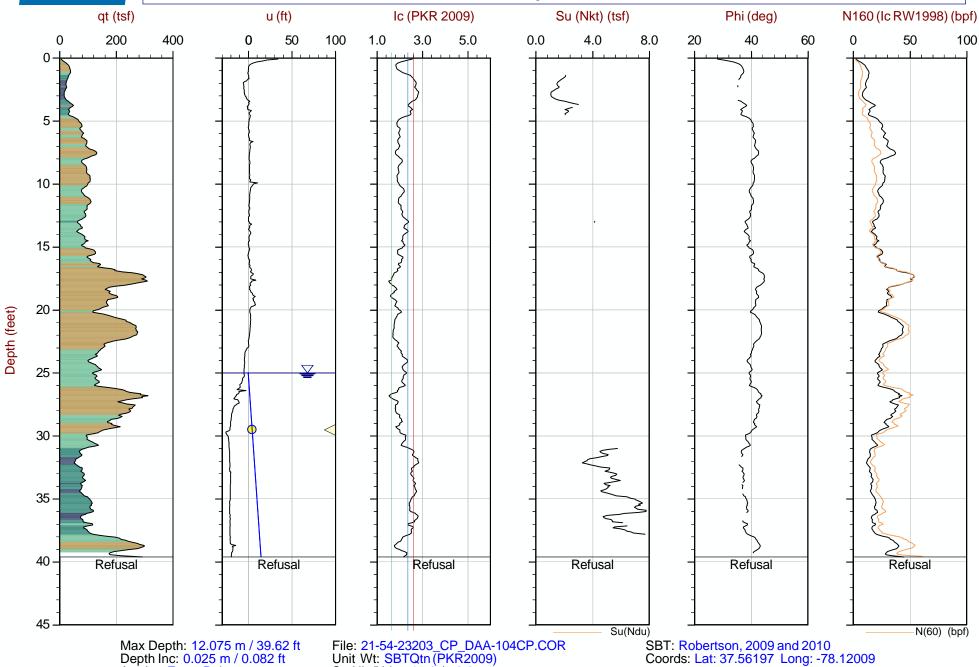

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Job No: 21-54-23203 Date: 2021-10-26 21:27

Site: Green Ridge Landfill

Sounding: DAA-102CP Cone: 556:T1500F15U35

Max Depth: 6.700 m / 21.98 ft File: 21-54-23203_CP_DAA-102CP.COR SBT: Robertson, 2009 and 2010 Depth Inc: 0.025 m / 0.082 ft Unit Wt: SBTQtn (PKR2009) Coords: Lat: 37.56434 Long: -78.11861 Avg Int: Every Point Su Nkt/Ndu: 15.0 / 6.0 Hydrostatic Line Ueq Assumed Ueq PPD, Ueq achieved PPD, Ueq not achieved



Job No: 21-54-23203 Date: 2021-10-26 16:35

Site: Green Ridge Landfill

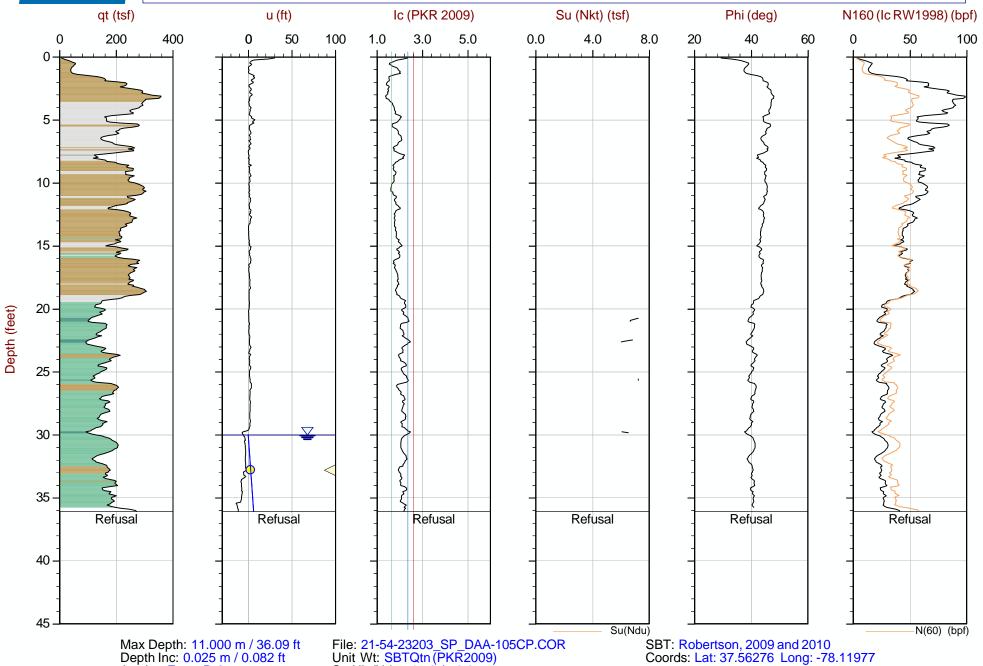
Sounding: DAA-104CP Cone: 556:T1500F15U35

Coords: Lat: 37.56197 Long: -78.12009

Avg Int: Every Point Su Nkt/Ndu: 15.0 / 6.0 Hydrostatic Line ○ Ueq ○ Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved

The reported coordinates were acquired from consumer-grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Unit Wt: SBTQtn (PKR2009)

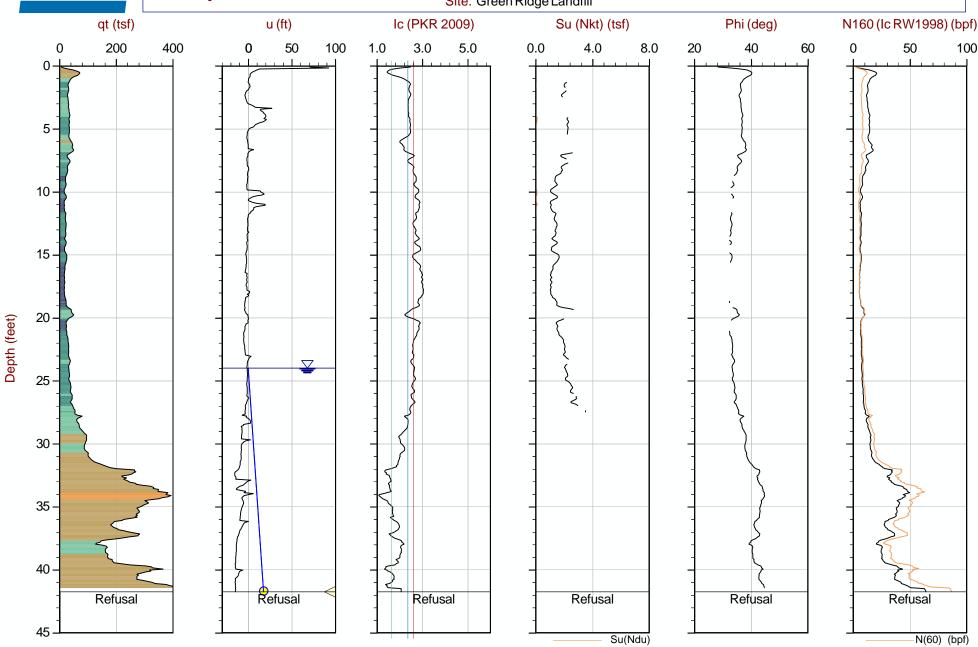


Avg Int: Every Point

Job No: 21-54-23203 Date: 2021-10-26 17:53

Site: Green Ridge Landfill

Sounding: DAA-105CP Cone: 556:T1500F15U35


Su Nkt/Ndu: 15.0 / 6.0

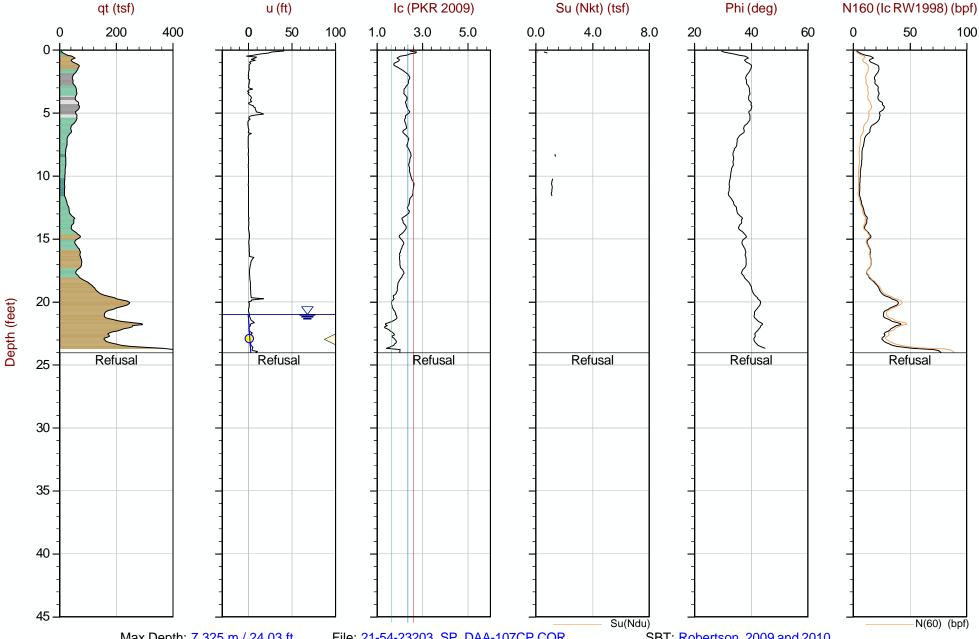
Job No: 21-54-23203 Date: 2021-10-26 20:02

Site: Green Ridge Landfill

Sounding: DAA-106CP Cone: 556:T1500F15U35

Max Depth: 12.725 m / 41.75 ft
Depth Inc: 0.025 m / 0.082 ft
Avg Int: Every Point

File: 21-54-23203_CP_DAA-106CP.COR
Unit Wt: SBTQtn (PKR2009)
Su Nkt/Ndu: 15.0 / 6.0


SBT: Robertson, 2009 and 2010
Coords: Lat: 37.56169 Long: -78.11837

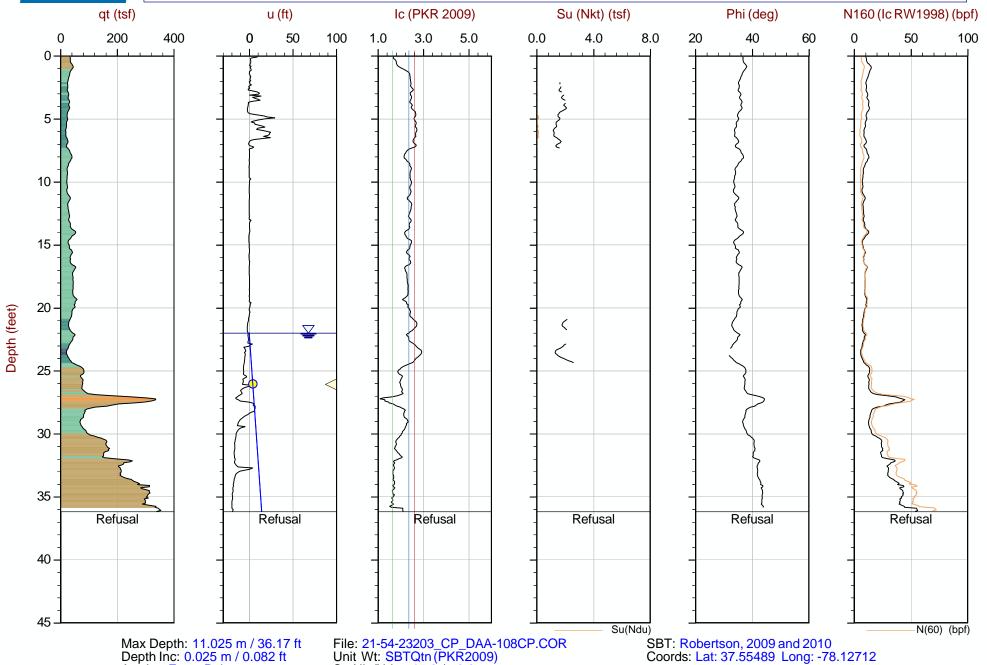
Job No: 21-54-23203 Date: 2021-10-25 19:54

Site: Green Ridge Landfill

Max Depth: 7.325 m / 24.03 ft Depth Inc: 0.025 m / 0.082 ftAvg Int: Every Point

File: 21-54-23203_SP_DAA-107CP.COR Unit Wt: SBTQtn (PKR2009)

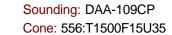
Su Nkt/Ndu: 15.0 / 6.0

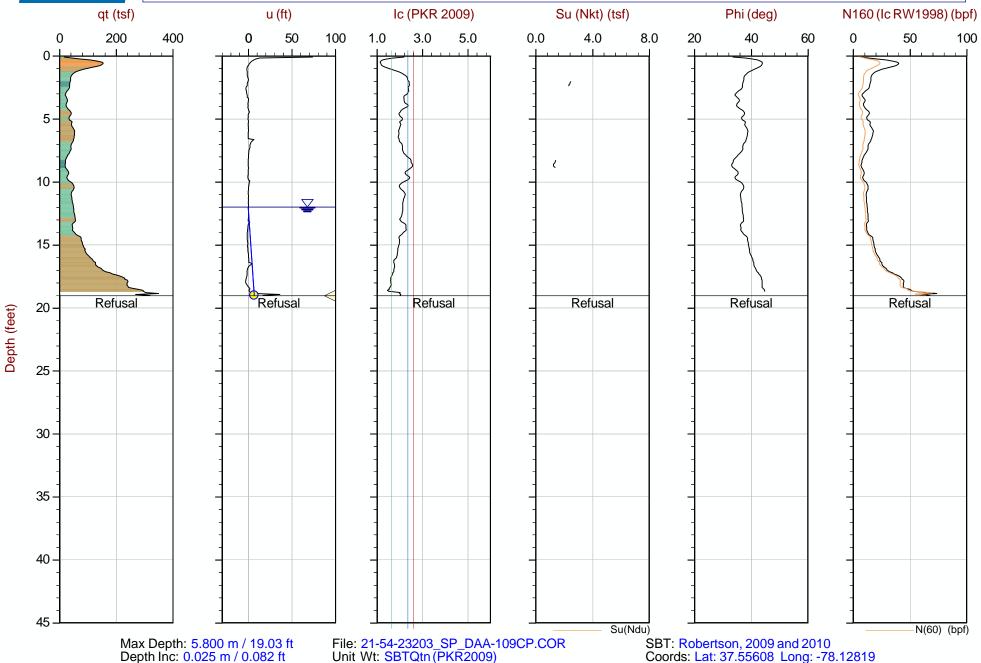

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55422 Long: -78.12564

Job No: 21-54-23203 Date: 2021-10-25 18:27

Site: Green Ridge Landfill

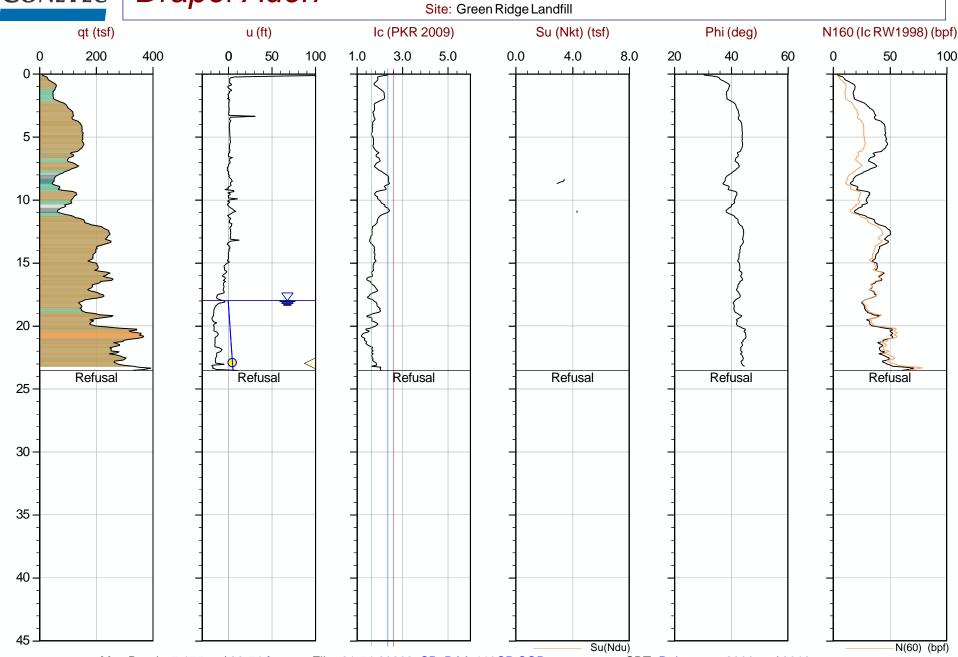
Sounding: DAA-108CP Cone: 556:T1500F15U35


Avg Int: Every Point Hydrostatic Line ○ Ueq ○ Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved


Su Nkt/Ndu: 15.0 / 6.0

Job No: 21-54-23203 Date: 2021-10-25 16:56

Site: Green Ridge Landfill



Depth (feet)

Draper Aden

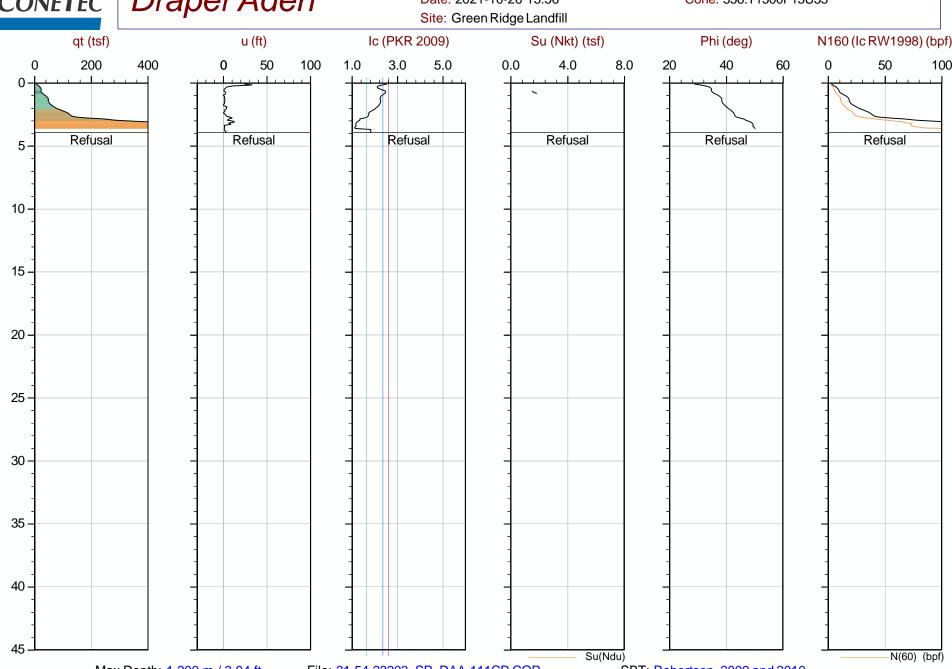
Job No: 21-54-23203 Date: 2021-10-25 13:56

Sounding: DAA-110CP Cone: 556:T1500F15U35

Max Depth: 7.175 m / 23.54 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point

File: 21-54-23203_SP_DAA-110CP.COR Unit Wt: SBTQtn (PKR2009)

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55731 Long: -78.12816


Su Nkt/Ndu: 15.0 / 6.0 Hydrostatic Line ○ Ueq ○ Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved

Depth (feet)

Draper Aden

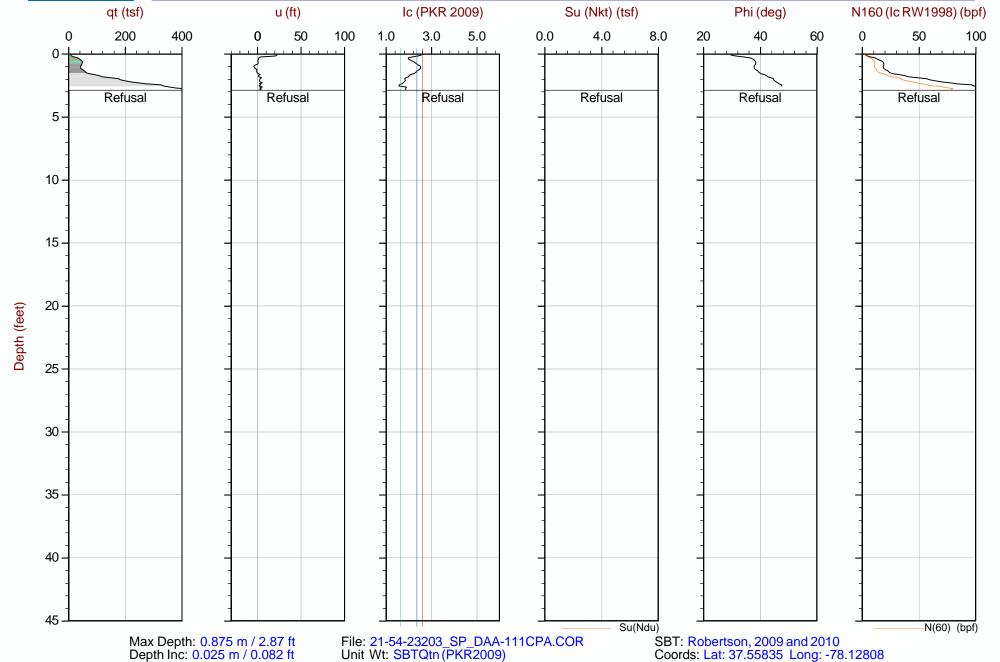
Job No: 21-54-23203 Date: 2021-10-26 13:56 Sounding: DAA-111CP Cone: 556:T1500F15U35

Max Depth: 1.200 m / 3.94 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point

File: 21-54-23203_SP_DAA-111CP.COR Unit Wt: SBTQtn (PKR2009)

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55835 Long: -78.12821

Su Nkt/Ndu: 15.0 / 6.0 Hydrostatic Line ● Ueq ● Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved

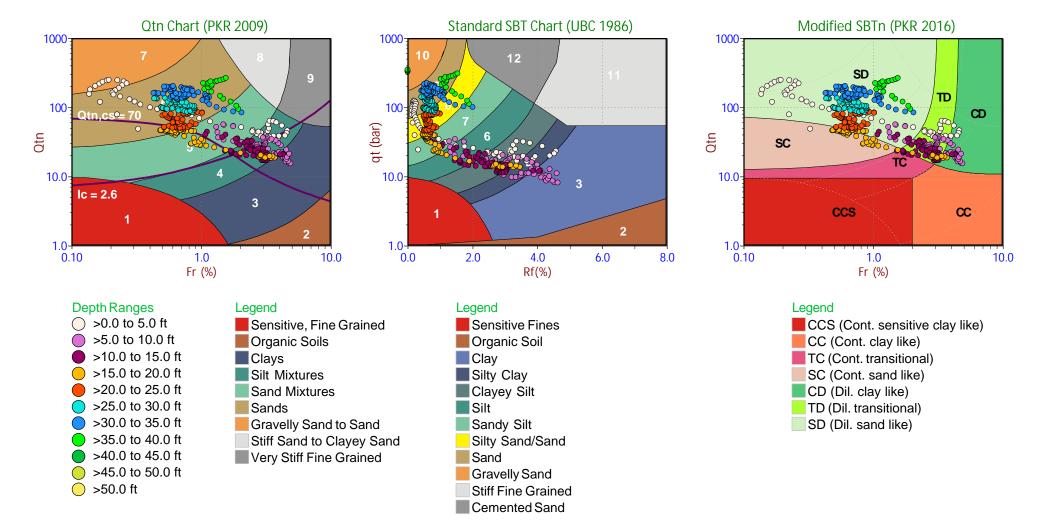


Job No: 21-54-23203 Date: 2021-10-26 14:25

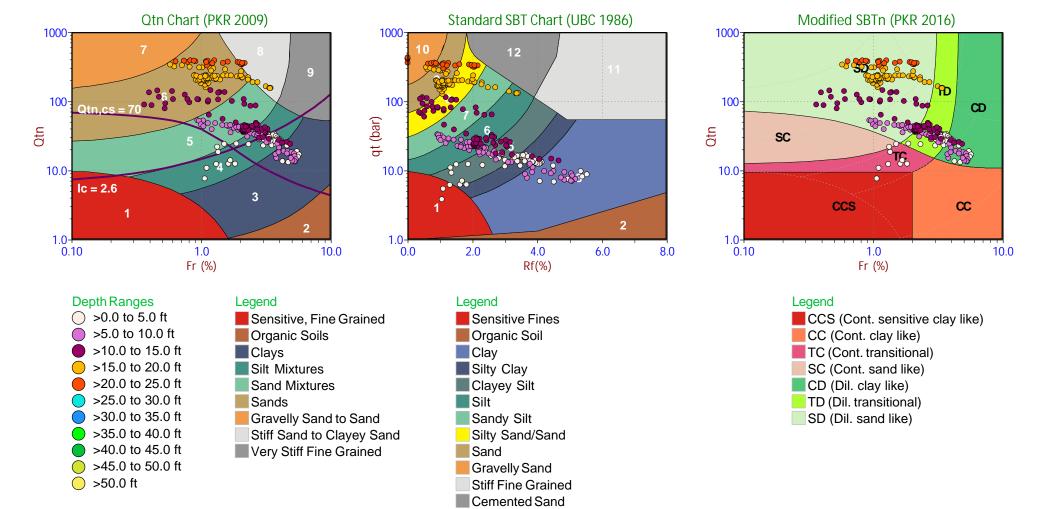
Site: Green Ridge Landfill

Sounding: DAA-111CPA

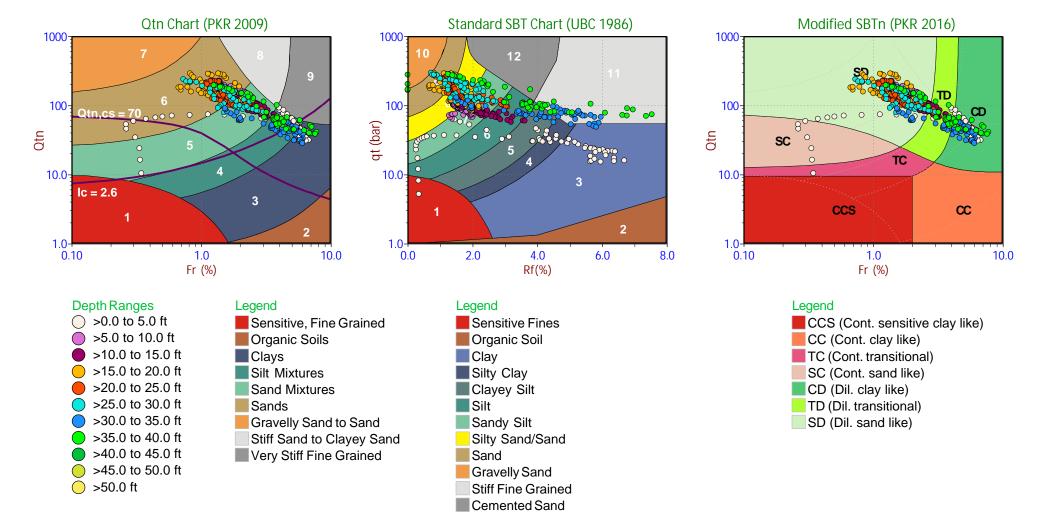
Cone: 556:T1500F15U35



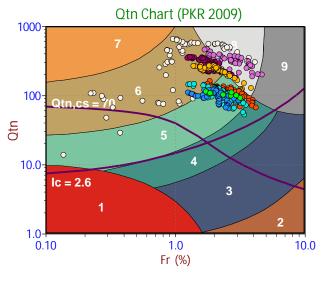
Avg Int: Every Point Su Nkt/Ndu: 15.0 / 6.0 Hydrostatic Line ● Ueq ● Assumed Ueq < PPD, Ueq achieved < PPD, Ueq not achieved **SBT Scatter Plots**

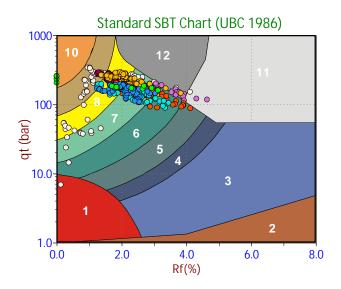


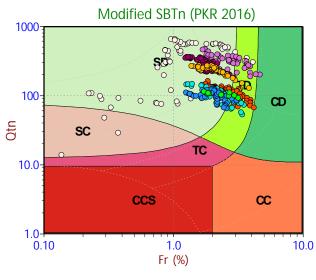
Job No: 21-54-23203 Date: 2021-10-25 15:34 Site: Green Ridge Landfill Sounding: DAA-4CP Cone: 556:T1500F15U35



Job No: 21-54-23203 Date: 2021-10-26 21:27 Site: Green Ridge Landfill Sounding: DAA-102CP Cone: 556:T1500F15U35


Job No: 21-54-23203 Date: 2021-10-26 16:35 Site: Green Ridge Landfill Sounding: DAA-104CP Cone: 556:T1500F15U35



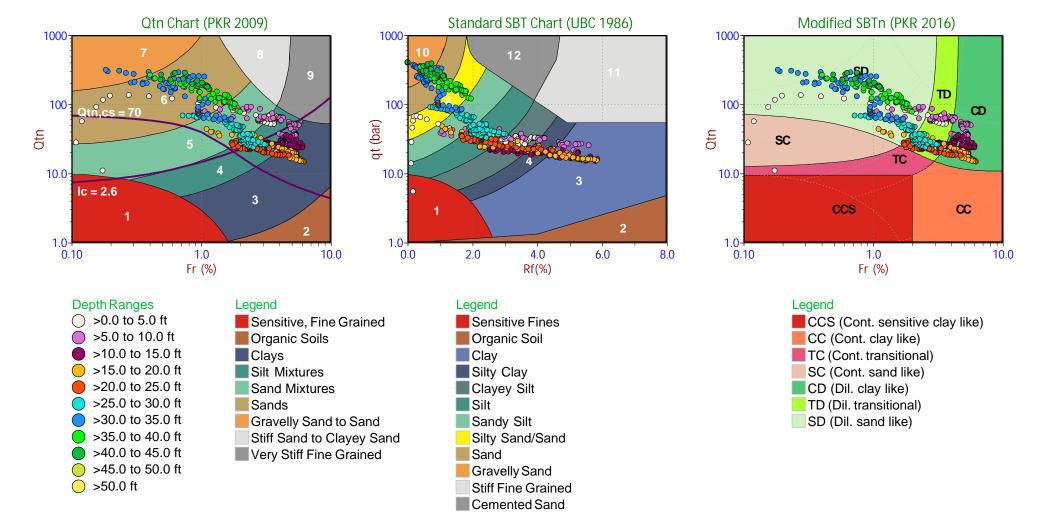


Job No: 21-54-23203 Date: 2021-10-26 17:53 Sounding: DAA-105CP Cone: 556:T1500F15U35

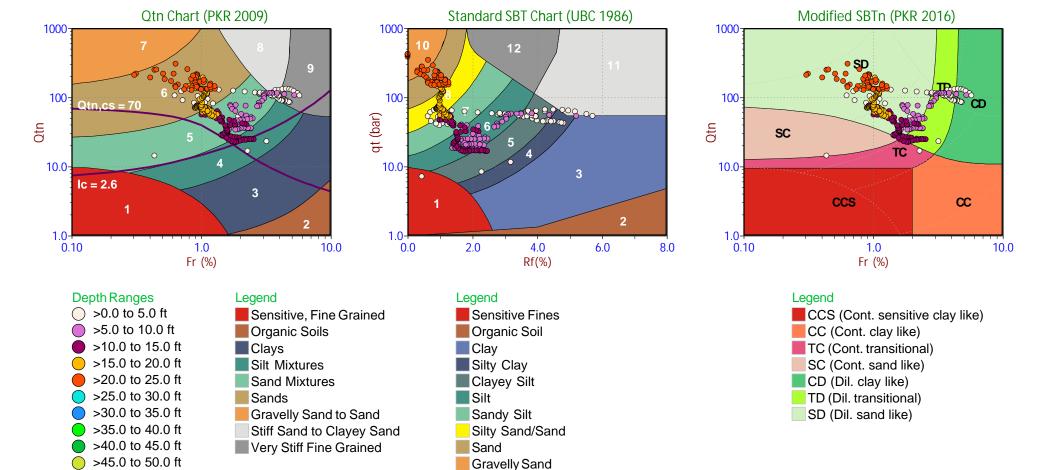
Site: Green Ridge Landfill

>0.0 to 5.0 ft >5.0 to 10.0 ft >10.0 to 15.0 ft >10.0 to 15.0 ft >15.0 to 20.0 ft >20.0 to 25.0 ft >25.0 to 30.0 ft >30.0 to 35.0 ft >35.0 to 40.0 ft >40.0 to 45.0 ft >45.0 to 50.0 ft >50.0 ft

Depth Ranges

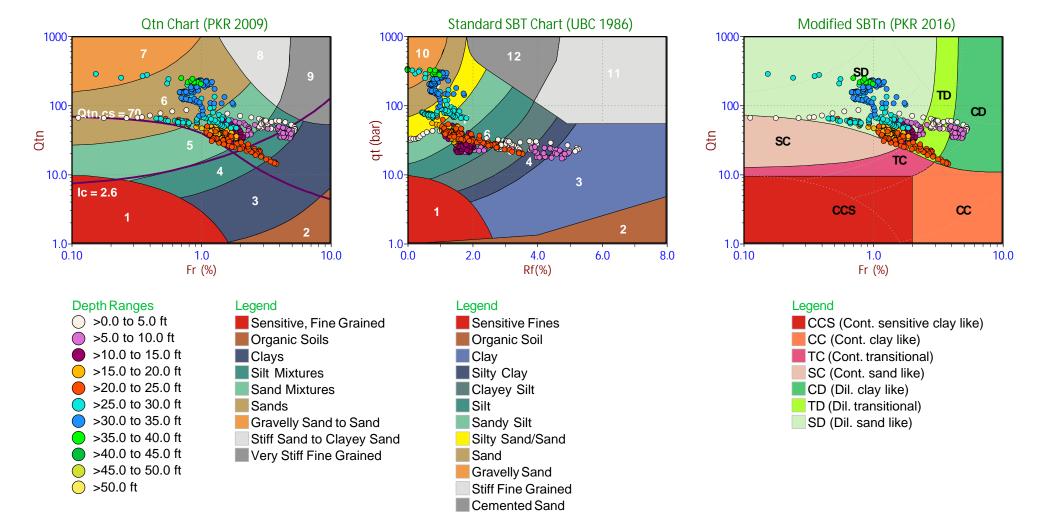


Job No: 21-54-23203 Date: 2021-10-26 20:02 Site: Green Ridge Landfill Sounding: DAA-106CP Cone: 556:T1500F15U35

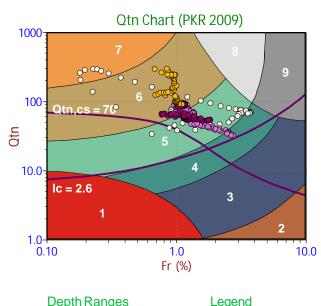


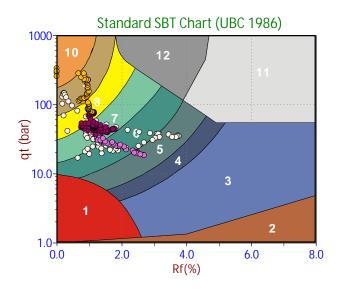
>50.0 ft

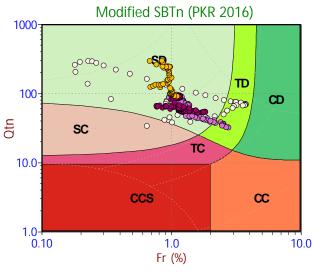
Draper Aden


Job No: 21-54-23203 Date: 2021-10-25 19:54 Site: Green Ridge Landfill Sounding: DAA-107CP Cone: 556:T1500F15U35

Stiff Fine Grained
Cemented Sand

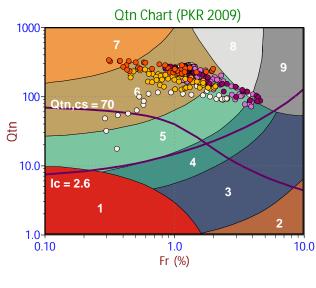


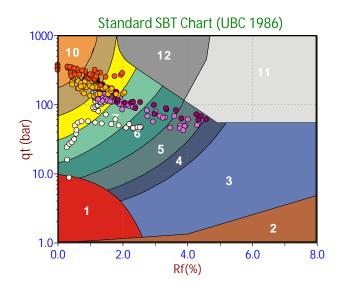

Job No: 21-54-23203 Date: 2021-10-25 18:27 Site: Green Ridge Landfill Sounding: DAA-108CP Cone: 556:T1500F15U35

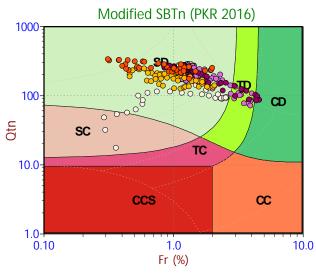


Job No: 21-54-23203 Date: 2021-10-25 16:56 Site: Green Ridge Landfill Sounding: DAA-109CP Cone: 556:T1500F15U35

>0.0 to 5.0 ft >5.0 to 10.0 ft >10.0 to 15.0 ft >15.0 to 20.0 ft >20.0 to 25.0 ft >25.0 to 30.0 ft >30.0 to 35.0 ft >35.0 to 40.0 ft >40.0 to 45.0 ft >45.0 to 50.0 ft >50.0 ft

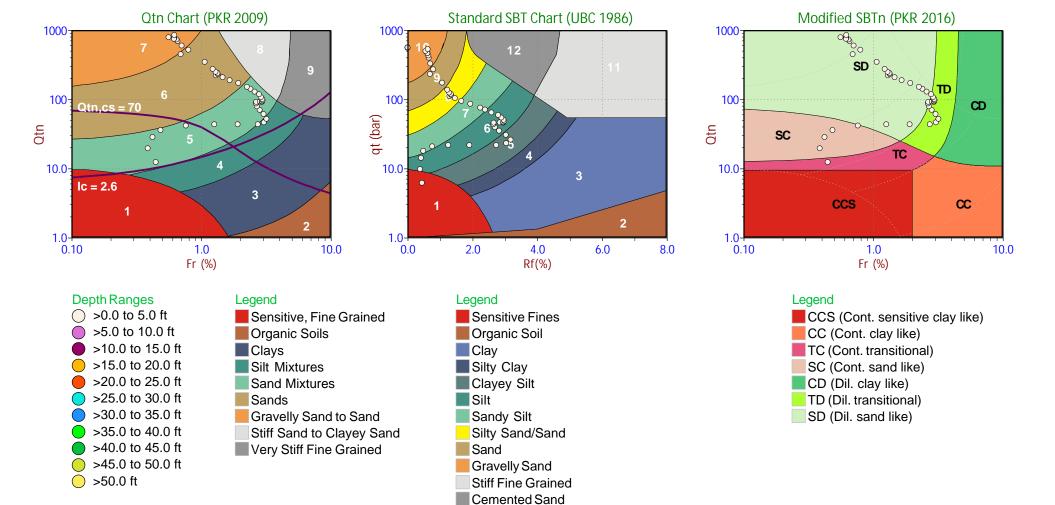


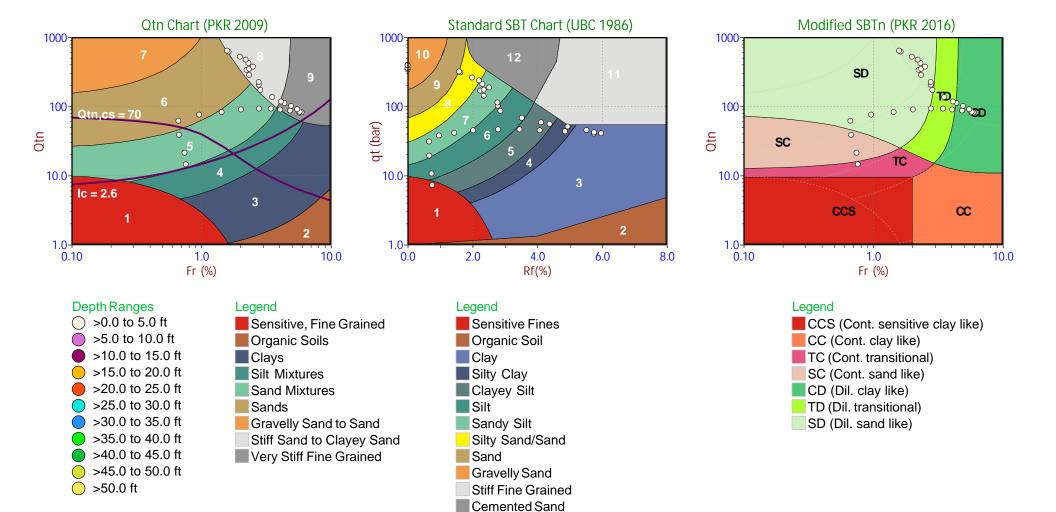




Job No: 21-54-23203 Date: 2021-10-25 13:56 Site: Green Ridge Landfill Sounding: DAA-110CP Cone: 556:T1500F15U35

Depth Ranges >0.0 to 5.0 ft >5.0 to 10.0 ft >10.0 to 15.0 ft >15.0 to 20.0 ft >20.0 to 25.0 ft >25.0 to 30.0 ft >30.0 to 35.0 ft >40.0 to 45.0 ft >45.0 to 50.0 ft >50.0 ft

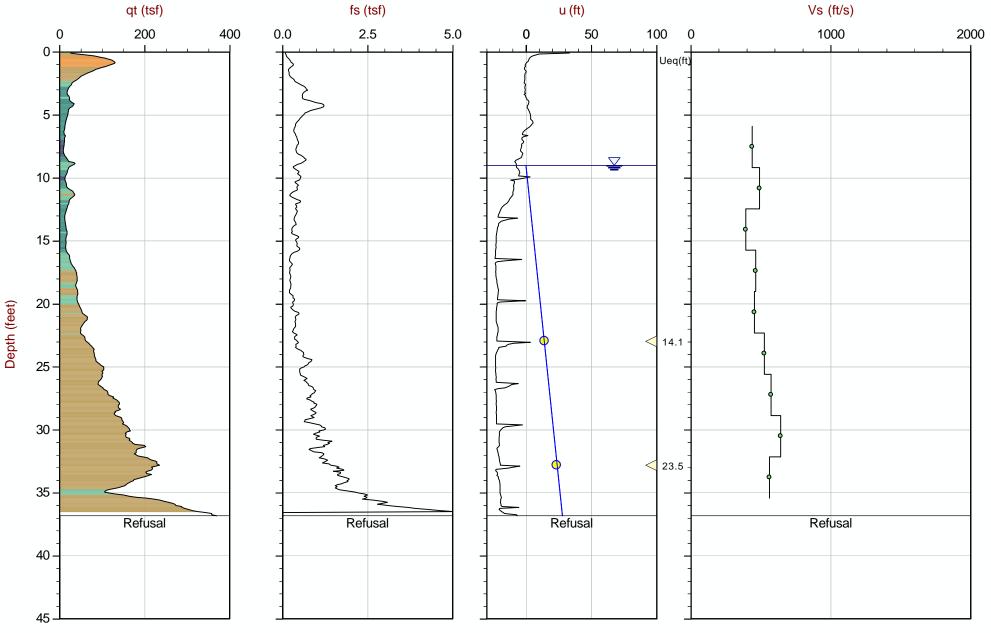




Job No: 21-54-23203 Date: 2021-10-26 13:56 Site: Green Ridge Landfill Sounding: DAA-111CP Cone: 556:T1500F15U35

Job No: 21-54-23203 Date: 2021-10-26 14:25 Site: Green Ridge Landfill Sounding: DAA-111CPA Cone: 556:T1500F15U35

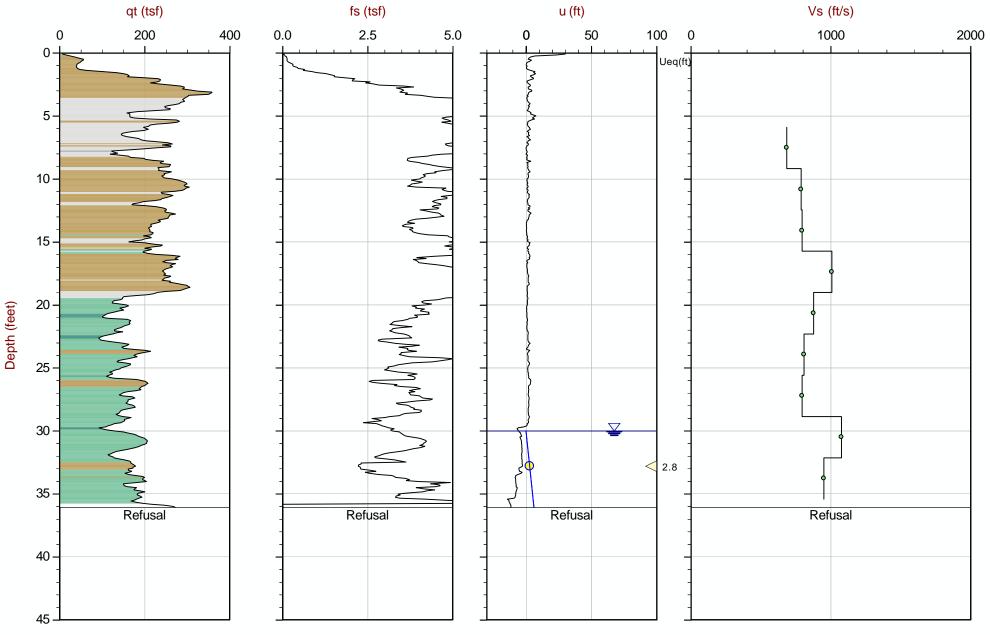
Seismic Cone Penetration Test Plots



Job No: 21-54-23203 Date: 2021-10-25 15:34

Site: Green Ridge Landfill

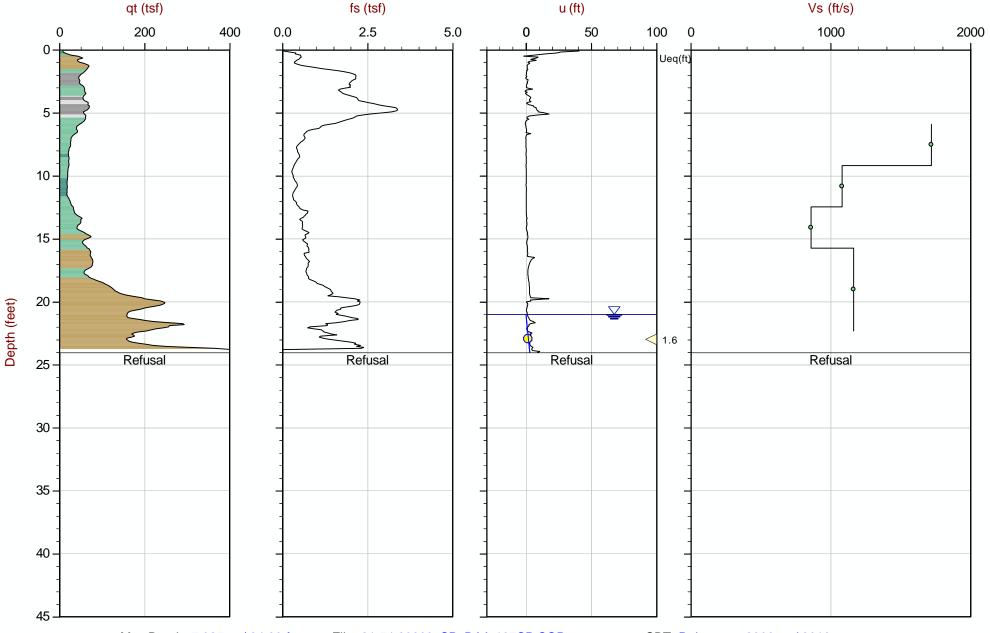
Sounding: DAA-4CP Cone: 556:T1500F15U35


Max Depth: 11.225 m / 36.83 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point File: 21-54-23203_CP_DAA-4CP.COR Unit Wt: SBTQtn (PKR2009) SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55674 Long: -78.12770

Job No: 21-54-23203 Date: 2021-10-26 17:53

Site: Green Ridge Landfill

Sounding: DAA-105CP Cone: 556:T1500F15U35


Max Depth: 11.000 m / 36.09 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point File: 21-54-23203_SP_DAA-105CP.COR Unit Wt: SBTQtn (PKR2009)

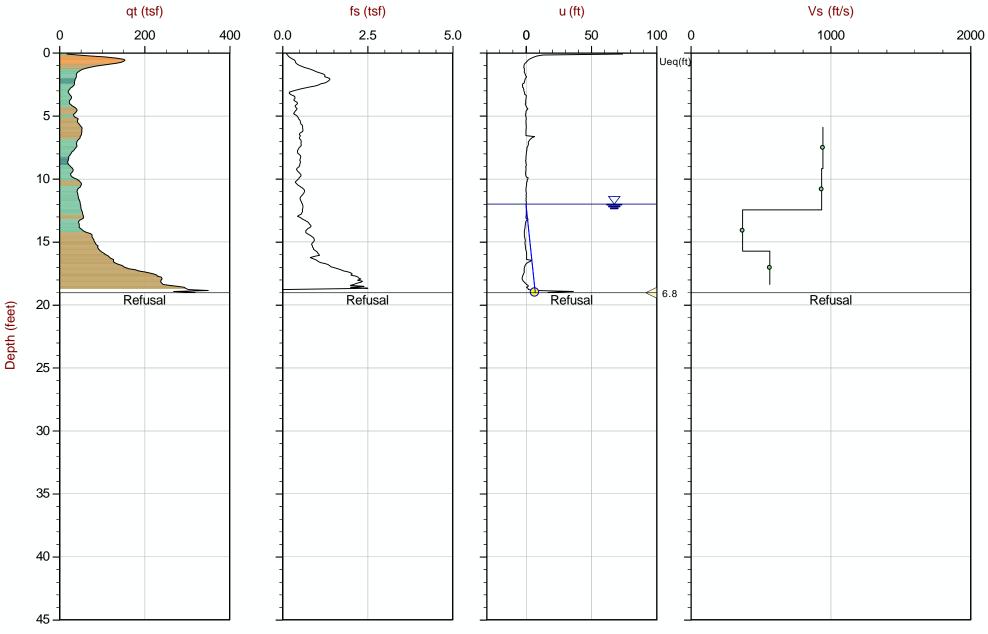
SBT: Robertson, 2009 and 2010 Coords: Lat: 37.56276 Long: -78.11977

Job No: 21-54-23203 Date: 2021-10-25 19:54 Sounding: DAA-107CP Cone: 556:T1500F15U35

Site: Green Ridge Landfill

Max Depth: 7.325 m / 24.03 ft Depth Inc: 0.025 m / 0.082 ftAvg Int: Every Point

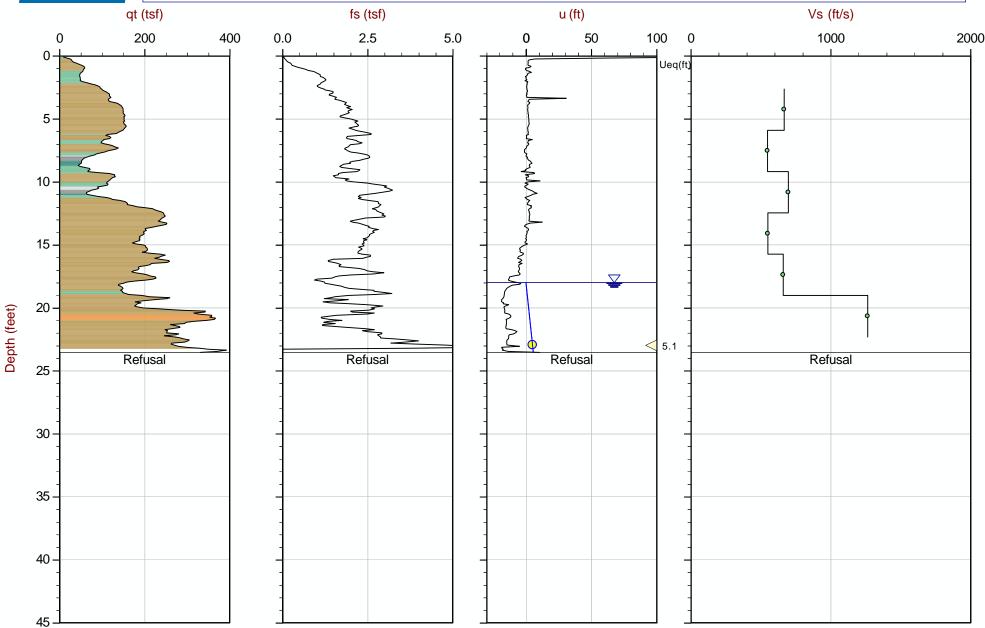
File: 21-54-23203_SP_DAA-107CP.COR Unit Wt: SBTQtn (PKR2009)


SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55422 Long: -78.12564

Job No: 21-54-23203 Date: 2021-10-25 16:56

Site: Green Ridge Landfill

Sounding: DAA-109CP Cone: 556:T1500F15U35


Max Depth: 5.800 m / 19.03 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point File: 21-54-23203_SP_DAA-109CP.COR Unit Wt: SBTQtn (PKR2009) SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55608 Long: -78.12819

Job No: 21-54-23203 Date: 2021-10-25 13:56

Site: Green Ridge Landfill

Sounding: DAA-110CP Cone: 556:T1500F15U35

Max Depth: 7.175 m / 23.54 ft Depth Inc: 0.025 m / 0.082 ft Avg Int: Every Point

File: 21-54-23203_SP_DAA-110CP.COR Unit Wt: SBTQtn (PKR2009)

SBT: Robertson, 2009 and 2010 Coords: Lat: 37.55731 Long: -78.12816

Seismic Cone Penetration Test Tabular Results

Project: Green Ridge Landfill

Sounding ID: DAA-4CP Date: 25-Oct-2021

Seismic Source: Beam
Source Offset (ft): 7.05
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs

Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
6.56	5.91	9.20			
9.84	9.19	11.58	2.38	5.44	438
13.12	12.47	14.32	2.74	5.59	491
16.40	15.75	17.25	2.93	7.47	393
19.69	19.03	20.29	3.04	6.56	464
22.97	22.31	23.40	3.10	6.85	453
26.25	25.59	26.54	3.15	6.00	524
29.53	28.87	29.72	3.18	5.54	574
32.81	32.15	32.92	3.20	4.97	643
36.09	35.43	36.13	3.21	5.72	561

Project: Green Ridge Landfill

Sounding ID: DAA-105CP Date: 26-Oct-2021

Seismic Source: Beam
Source Offset (ft): 7.05
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs

Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
6.56	5.91	9.20			
9.84	9.19	11.58	2.38	3.48	685
13.12	12.47	14.32	2.74	3.48	788
16.40	15.75	17.25	2.93	3.69	795
19.69	19.03	20.29	3.04	3.02	1007
22.97	22.31	23.40	3.10	3.53	878
26.25	25.59	26.54	3.15	3.89	809
29.53	28.87	29.72	3.18	4.00	795
32.81	32.15	32.92	3.20	2.97	1076
36.09	35.43	36.13	3.21	3.38	950

Project: Green Ridge Landfill

Sounding ID: DAA-107CP Date: 25-Oct-2021

Seismic Source: Beam
Source Offset (ft): 7.05
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs Tip Geophone Ray Ray Path Travel Time Interval Depth Difference Depth Path Interval Velocity (ft) (ft) (ft) (ft) (ms) (ft/s) 6.56 5.91 9.20 9.84 9.19 11.58 2.38 1.39 1720 12.47 2.74 2.54 1080 13.12 14.32 2.93 16.40 15.75 17.25 3.41 859 22.97 22.31 23.40 6.14 5.28 1164

Project: Green Ridge Landfill

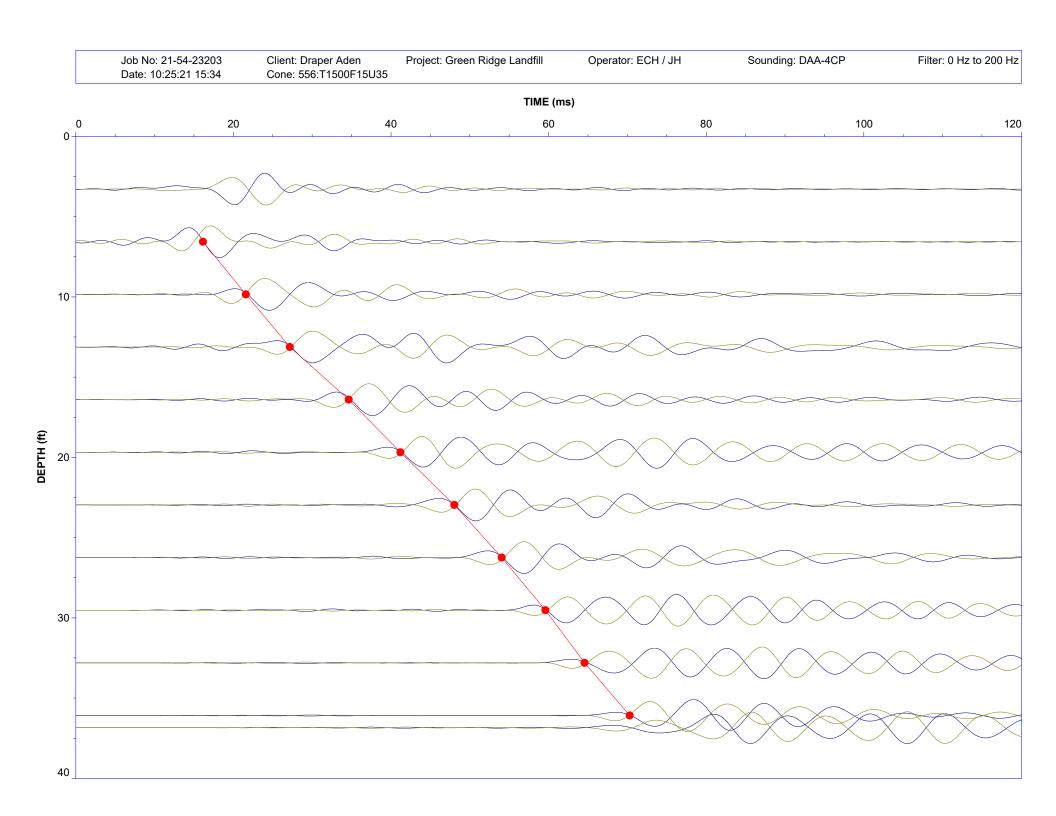
Sounding ID: DAA-109CP Date: 25-Oct-2021

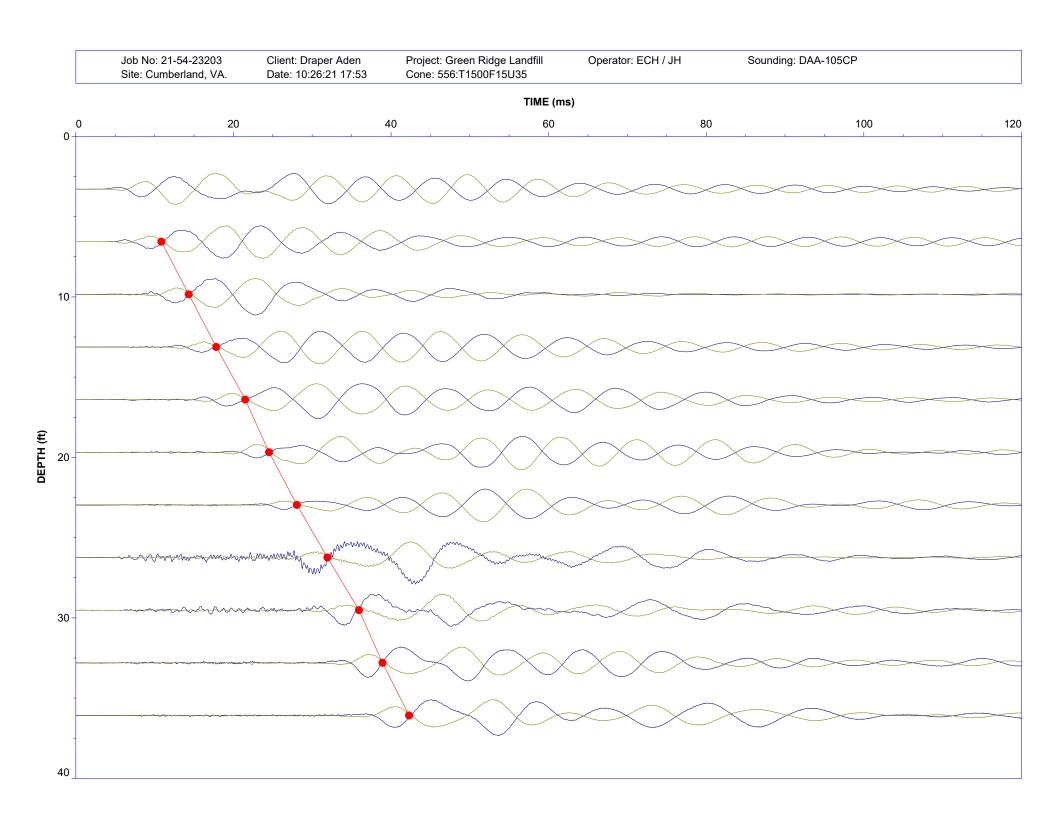
Seismic Source: Beam
Source Offset (ft): 7.05
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66

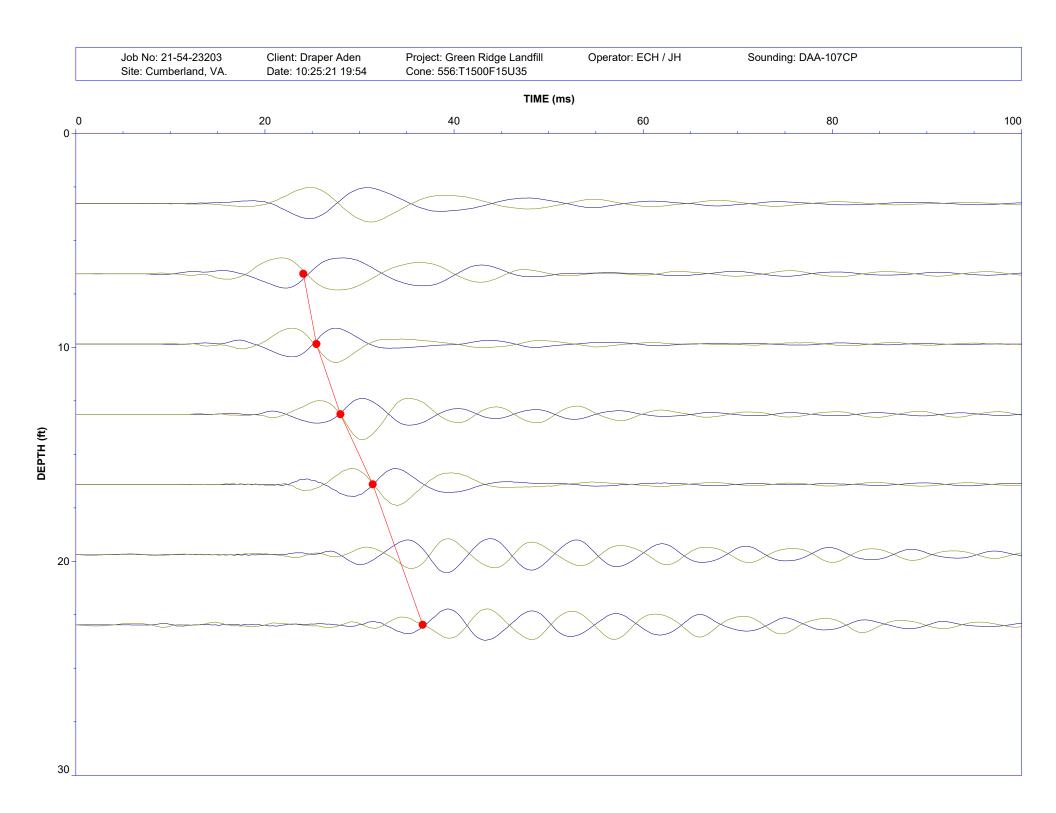
SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs Tip Geophone Ray Ray Path Travel Time Interval Depth Difference Depth Path Interval Velocity (ft) (ft) (ft) (ft) (ms) (ft/s) 6.56 5.91 9.20 9.84 9.19 11.58 2.38 2.52 944 12.47 14.32 2.74 2.94 934 13.12 2.93 16.40 15.75 17.25 7.95 369 4.30 19.03 18.37 19.68 2.42 564

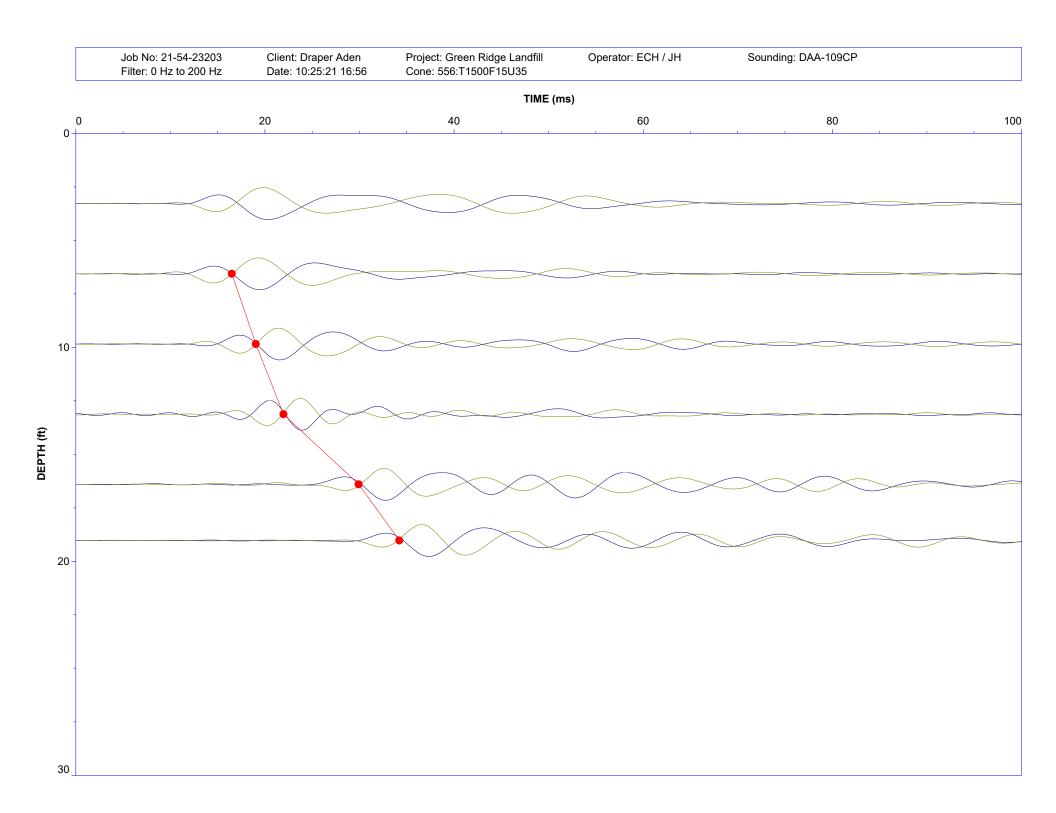
Project: Green Ridge Landfill

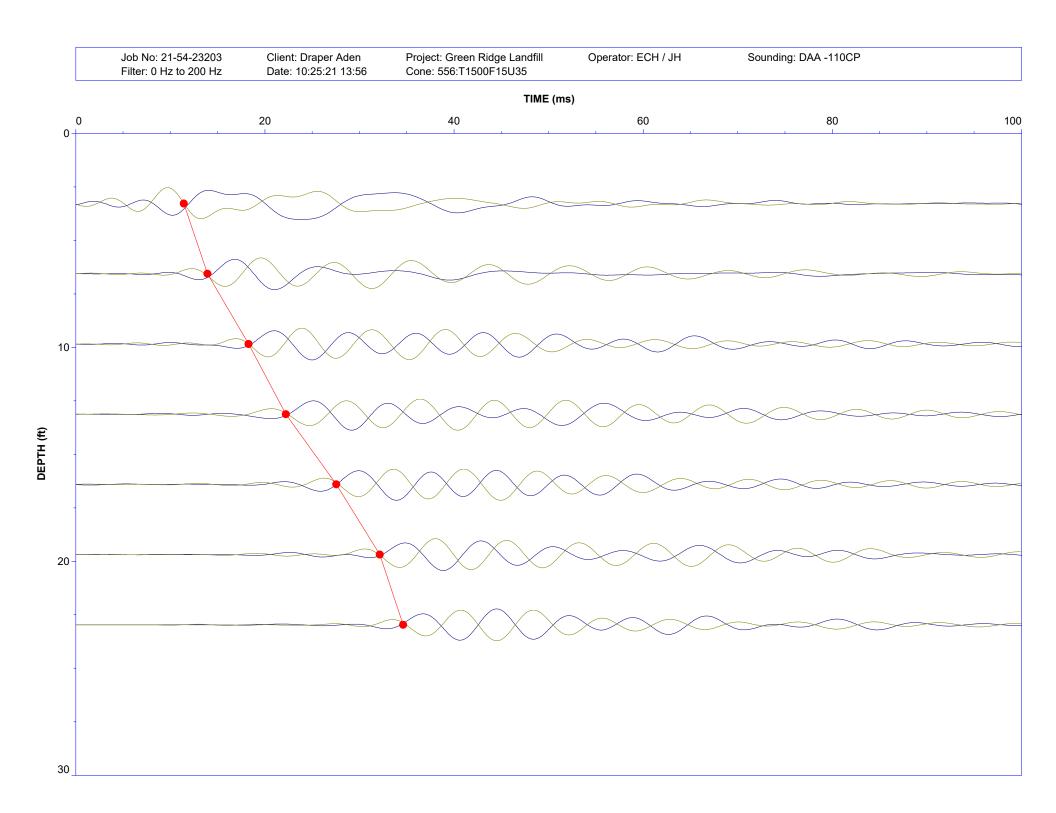
Sounding ID: DAA-110CP Date: 25-Oct-2021


Seismic Source: Beam
Source Offset (ft): 7.05
Source Depth (ft): 0.00
Geophone Offset (ft): 0.66


SCPTu SHEAR WAVE VELOCITY TEST RESULTS - Vs


Tip Depth (ft)	Geophone Depth (ft)	Ray Path (ft)	Ray Path Difference (ft)	Travel Time Interval (ms)	Interval Velocity (ft/s)
(10)	(10)	(10)	(10)	(1113)	(11,3)
3.28	2.62	7.52			
6.56	5.91	9.20	1.67	2.51	668
9.84	9.19	11.58	2.38	4.35	548
13.12	12.47	14.32	2.74	3.94	696
16.40	15.75	17.25	2.93	5.32	551
19.69	19.03	20.29	3.04	4.61	660
22.97	22.31	23.40	3.10	2.46	1263


Seismic Cone Penetration Test Wave Traces



Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

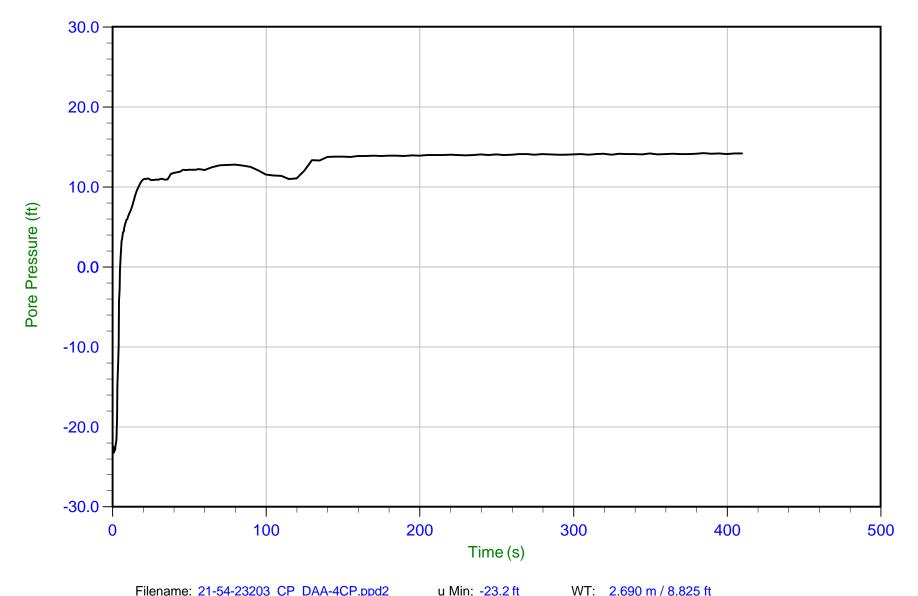
Job No: 21-54-23203 Client: Draper Aden

Project: Green Ridge Landfill

 Start Date:
 25-Oct-2021

 End Date:
 26-Oct-2021

	CPTu PORE PRES	SURE DISSI	PATION SU	JMMARY	,	
Sounding ID	File Name	Cone Area (cm²)	Duration (s)	Test Depth (ft)	Estimated Equilibrium Pore Pressure U _{eq} (ft)	Calculated Phreatic Surface (ft)
DAA-4CP	21-54-23203_CP_DAA-4CP	15	410	23.0	14.1	8.8
DAA-4CP	21-54-23203_CP_DAA-4CP	15	365	32.8	23.5	9.3
DAA-102CP	21-54-23203_CP_DAA-102CP	15	180	14.3	5.2	9.1
DAA-104CP	21-54-23203_CP_DAA-104CP	15	535	29.5	4.6	24.9
DAA-105CP	21-54-23203_SP_DAA-105CP	15	840	32.8	2.8	30.0
DAA-106CP	21-54-23203_CP_DAA-106CP	15	1160	41.7	18.2	23.6
DAA-107CP	21-54-23203_SP_DAA-107CP	15	620	23.0	1.6	21.4
DAA-108CP	21-54-23203_CP_DAA-108CP	15	525	26.1	4.6	21.5
DAA-109CP	21-54-23203_SP_DAA-109CP	15	555	19.0	6.8	12.2
DAA-110CP	21-54-23203_SP_DAA-110CP	15	720	23.0	5.1	17.9
Totals			1.6 hrs			



Job No: 21-54-23203 Date: 10/25/2021 15:34

Site: Green Ridge Landfill

Sounding: DAA-4CP

Cone: 556:T1500F15U35 Area=15 cm²

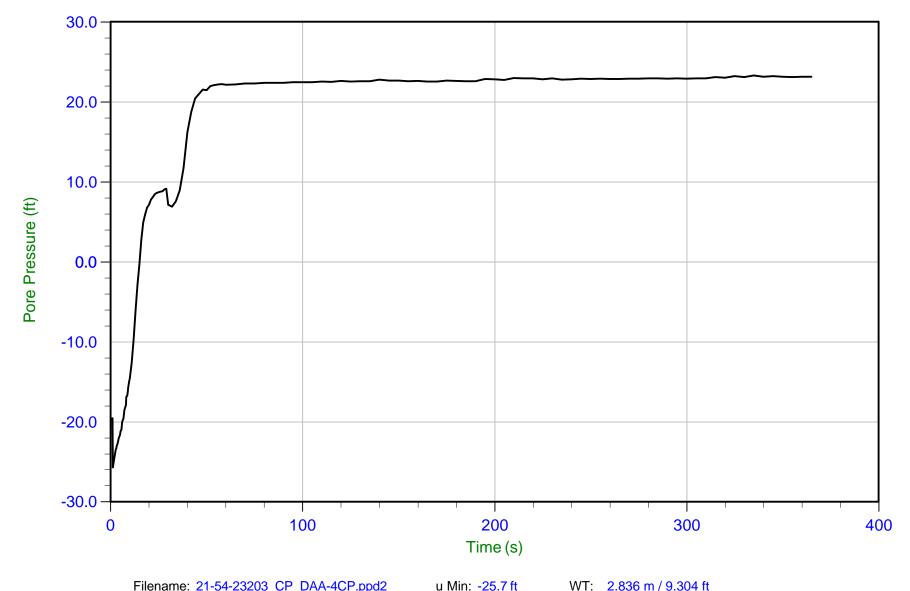
Filename: 21-54-23203_CP_DAA-4CP.ppd2

Depth: 7.000 m / 22.966 ft

Duration: 410.0 s

Trace Summary:

u Min: -23.2 ft


u Max: 14.2 ft u Final: 14.2 ft

Ueq: 14.1 ft

Job No: 21-54-23203 Date: 10/25/2021 15:34 Site: Green Ridge Landfill Sounding: DAA-4CP

Cone: 556:T1500F15U35 Area=15 cm²

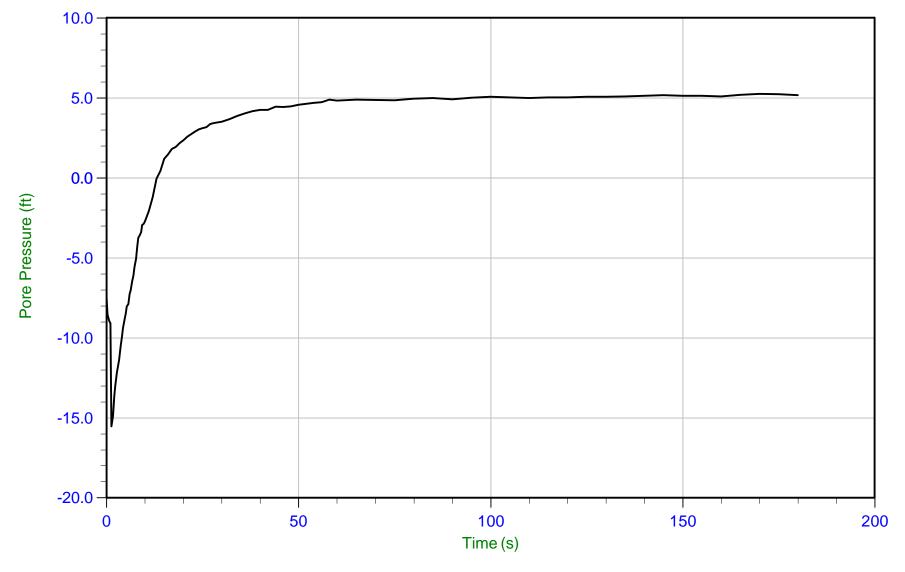
Filename: 21-54-23203_CP_DAA-4CP.ppd2

Depth: 10.000 m / 32.808 ft

Duration: 365.0 s

Trace Summary:

u Min: -25.7 ft


u Max: 23.3 ft u Final: 23.1 ft

Ueq: 23.5 ft

Job No: 21-54-23203 Date: 10/26/2021 21:27 Site: Green Ridge Landfill Sounding: DAA-102CP

Cone: 556:T1500F15U35 Area=15 cm²

Filename: 21-54-23203_CP_DAA-102CP.ppd2 Trace Summary:

Depth: 4.350 m / 14.271 ft

Duration: 180.0 s

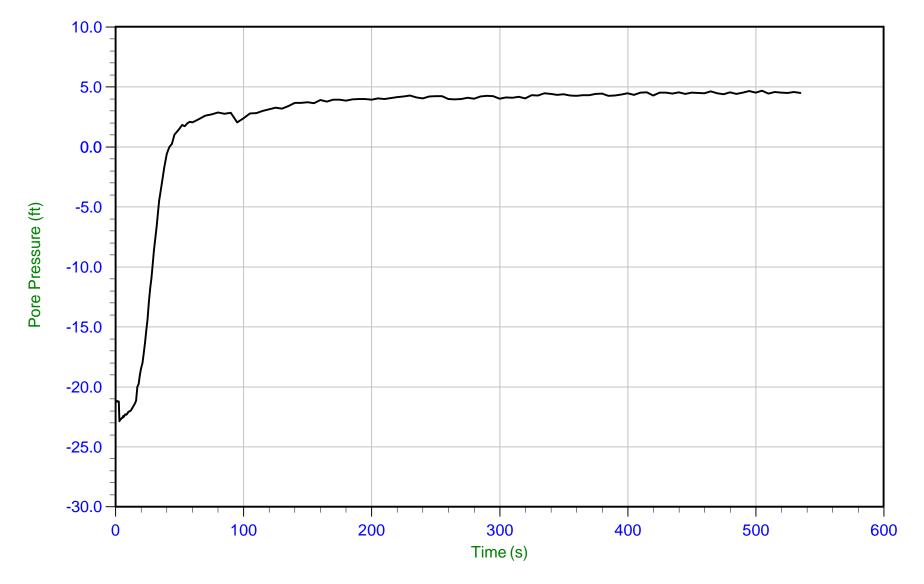
u Min: -15.5 ft

u Max: 5.2 ft

u Final: 5.2 ft

WT: 2.770 m / 9.087 ft

Ueq: 5.2 ft



Job No: 21-54-23203 Date: 10/26/2021 16:35

Site: Green Ridge Landfill

Sounding: DAA-104CP

Cone: 556:T1500F15U35 Area=15 cm²

Filename: 21-54-23203_CP_DAA-104CP.ppd2

Depth: 9.000 m / 29.527 ft

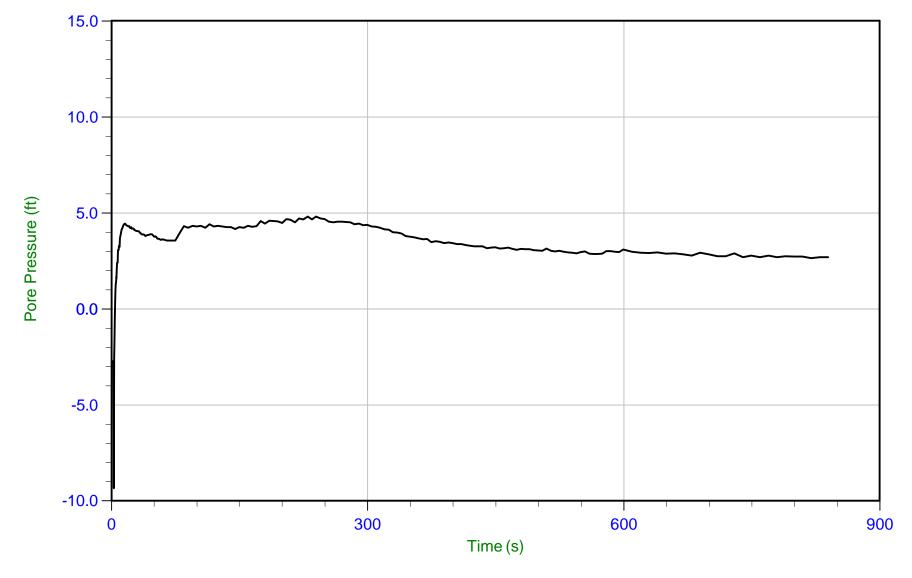
Duration: 535.0 s

Trace Summary:

u Min: -22.9 ft

u Max: 4.7 ft

u Final: 4.5 ft


WT: 7.588 m / 24.896 ft

Ueq: 4.6 ft

Job No: 21-54-23203 Date: 10/26/2021 17:53 Site: Green Ridge Landfill Sounding: DAA-105CP

Cone: 556:T1500F15U35 Area=15 cm²

Trace Summary:

Filename: 21-54-23203_SP_DAA-105CP.ppd2

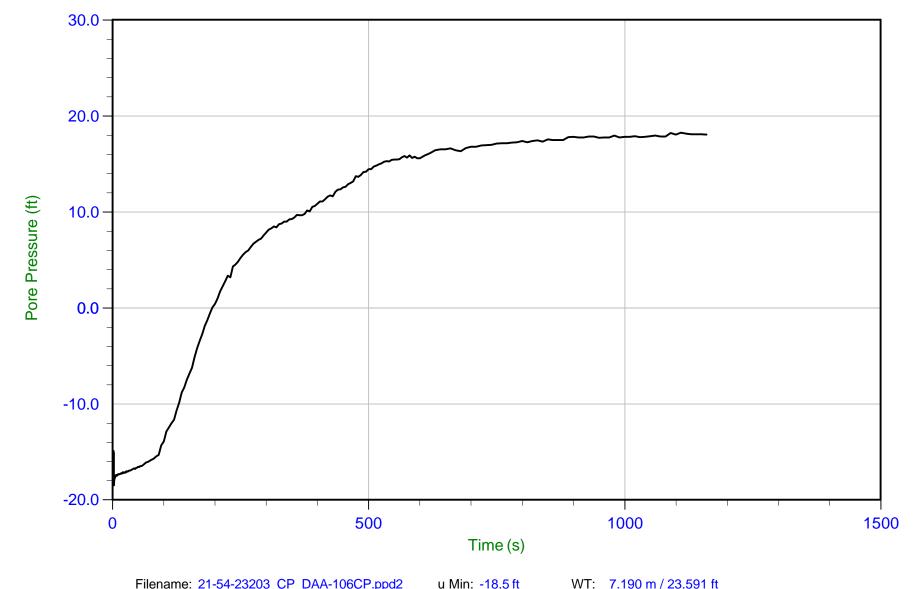
Depth: 10.000 m / 32.808 ft

Duration: 840.0 s

u Min: -9.3 ft

u Max: 4.8 ft

u Final: 2.7 ft


WT: 9.138 m / 29.979 ft

Ueq: 2.8 ft

Job No: 21-54-23203 Date: 10/26/2021 20:02 Site: Green Ridge Landfill Sounding: DAA-106CP

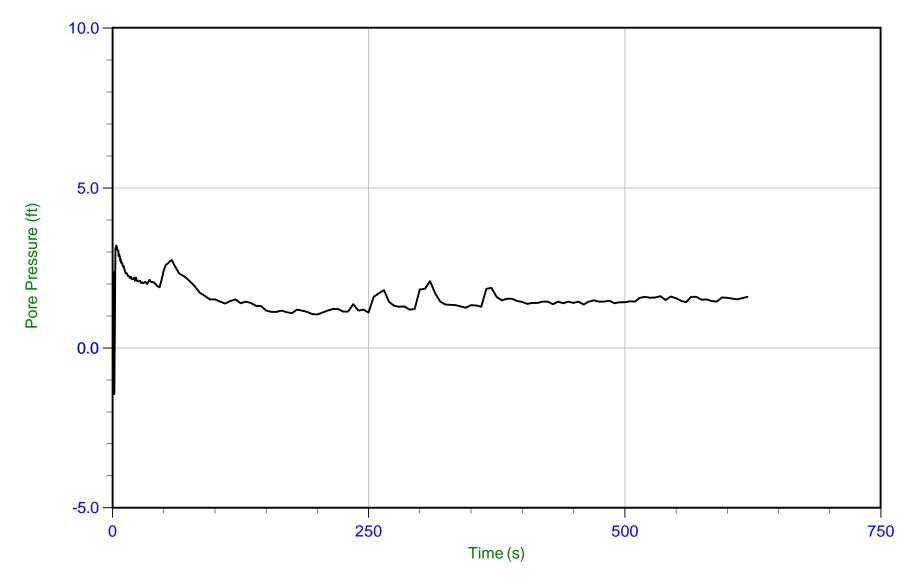
Cone: 556:T1500F15U35 Area=15 cm²

Trace Summary:

Filename: 21-54-23203_CP_DAA-106CP.ppd2

Depth: 12.725 m / 41.748 ft

Duration: 1160.0 s


u Min: -18.5 ft

u Max: 18.2 ft u Final: 18.0 ft Ueq: 18.2 ft

Job No: 21-54-23203 Date: 10/25/2021 19:54 Site: Green Ridge Landfill Sounding: DAA-107CP

Cone: 556:T1500F15U35 Area=15 cm²

Trace Summary:

Filename: 21-54-23203_SP_DAA-107CP.ppd2

Depth: 7.000 m / 22.966 ft

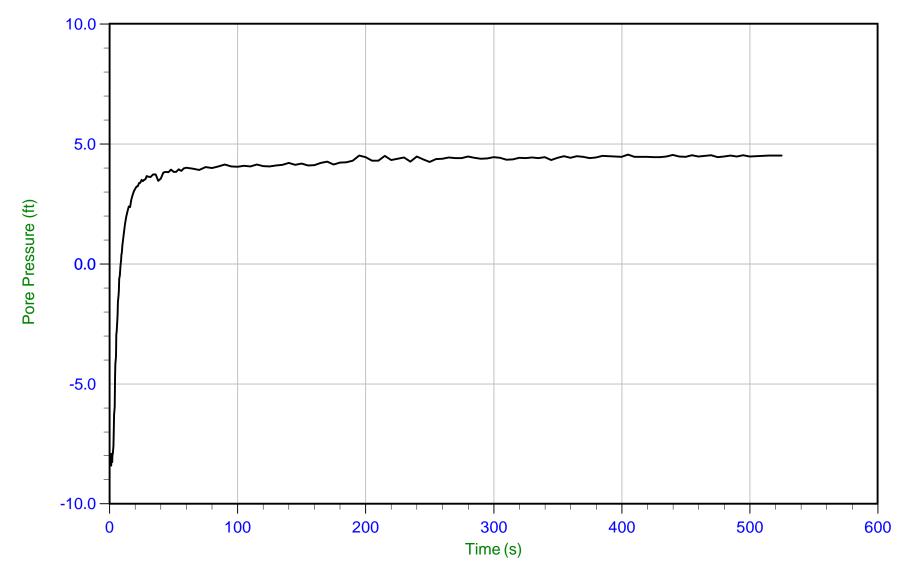
Duration: 620.0 s

u Min: -1.4 ft

u Max: 3.2 ft u Final: 1.6 ft

Ueq: 1.6 ft

WT: 6.515 m / 21.374 ft



Job No: 21-54-23203 Date: 10/25/2021 18:27

Site: Green Ridge Landfill

Sounding: DAA-108CP

Cone: 556:T1500F15U35 Area=15 cm²

Filename: 21-54-23203_CP_DAA-108CP.ppd2

Depth: 7.950 m / 26.082 ft

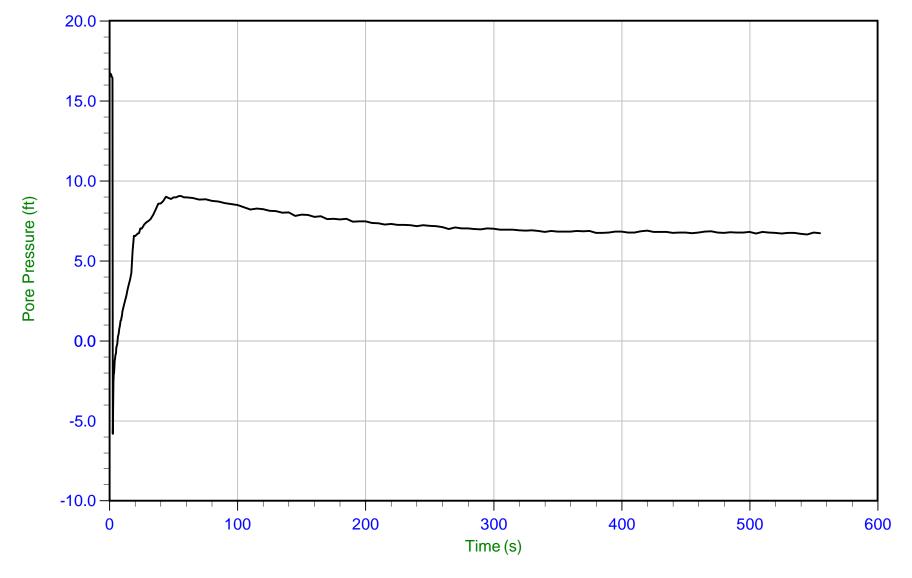
Duration: 525.0 s

Trace Summary:

u Min: -8.4 ft

u Max: 4.6 ft

u Final: 4.5 ft


WT: 6.552 m / 21.496 ft

Ueq: 4.6 ft

Job No: 21-54-23203 Date: 10/25/2021 16:56 Site: Green Ridge Landfill Sounding: DAA-109CP

Cone: 556:T1500F15U35 Area=15 cm²

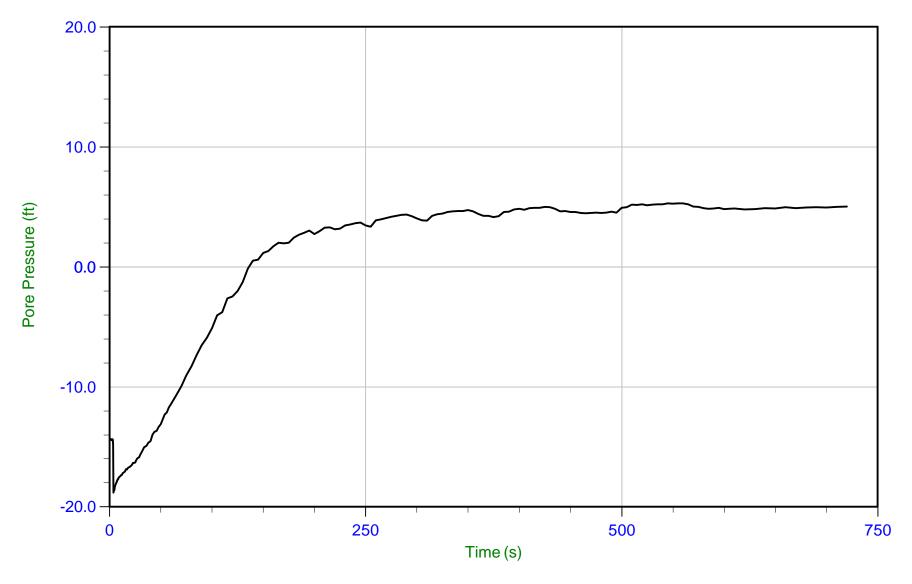
Filename: 21-54-23203_SP_DAA-109CP.ppd2 Trace Summary:

Depth: 5.800 m / 19.029 ft

Duration: 555.0 s

u Min: -5.8 ft

u Max: 16.8 ft


Ueq: 6.8 ft u Final: 6.7 ft

WT: 3.723 m / 12.214 ft

Job No: 21-54-23203 Date: 10/25/2021 13:56 Site: Green Ridge Landfill Sounding: DAA-110CP

Cone: 556:T1500F15U35 Area=15 cm²

Trace Summary:

Filename: 21-54-23203_SP_DAA-110CP.ppd2

Depth: 7.000 m / 22.966 ft

Duration: 720.0 s

u Min: -18.8 ft

u Max: 5.3 ft

u Final: 5.0 ft

WT: 5.447 m / 17.871 ft

Ueq: 5.1 ft

Boring/Well ID: DAA-112pz

D		0	Natura Danasalliana	D		O 11- A	(0	1	D.:::: D:-	. T		Tues Is Biss ONE 45
Project:			Ridge Recycling	Boring/Well Are		South Area	a or Ce	911	Drilling Rig			Track Rig CME 45
Project		210137				Coakley			Drilling Me			I.25" Hollow Stem Auger
Location		Cumbe	rland County, VA			6429.45			Sampling I			Split Spoon
Start Da			11/29/21			90969.56			Well Mater			Schedule 40 PVC
Comple			11/29/21	Ground Elevation	n:	351.20			Screen Siz			0 Slot
Contrac	tor:	Blue Ri	dge Drilling	Total Depth:		18'			Filter Pack	:	#2	Sand
Driller:		James .	Jones	TOC Elevation:		353.49	,		Seal:	Bento	onit	e Pellets/Hydrated
N Value	Blow		n Des	cription (USCS)			Geol	Well Log				Remarks
6	2335334323443453448231056118357	-	Light Tan Silty CLAY	, trace fine Sand	(ML	.)			_	Loose	Э	
7	3 4 3 2	-	Gray Silty CLAY, little	e fine Sand (ML)					-			
7	3 4 4 3	- 5	Gray SILT, some fine						- 346.20	Appro	ох. [Depth to GW during drilling
9	4 5 3 4	-	Drk Gray fine SAND, (SM)	brown Silt bands	s, mi	caceous			-			
12	4 8 22 3	- 10	Grayish Tan Fine SA	ND, some Silt, m	icac	ceous (SM)			- - 341.20	Mediu	ım l	Dense
25	10 15 16 11	-							<u>-</u>			
51	28 23 15 7 50/5"	-							_	Very	Den	se
>50	50/5"		Light Brown fine SAN lenses, horizontal str						- 336.20			
>50			Auge	er Refusal at 18'								
		- 20							- 331.20			
									_ 331.20			
									L			
									L			
		- 25							- 326.20			
									L			
		- 30							- 321.20			
		L							L			
									L			
		L							L			

Boring/Well ID:

DAA-1sb

Project	•	Green i	Ridge Recycling	Boring/Well A	Area:	West Area	ľ		Drilling Rig	glype		Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	;	3.25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	37	26364.55			Sampling I	Method	d:	Split Spoon
Start D	ate:		02/21/19	Easting:	11	590010.10			Well Mate	rial:	NA	
Comple	etion Da	ate:	02/21/19	Ground Eleva	ation:	348.25			Screen Siz	ze:	NA	
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		31.5'			Filter Pack	c :	NA	
Oriller:		James	Jones	TOC Elevation	n:	NA			Seal:	Bente	onit	e Pellets/Hydrated
N Value	Blow Count		h De	escription (USCS	5)		Geol	Well Log				Remarks
		-	Red SILT, some CI	ay, trace fine Sa	nd (M	Н)			- - - - - 343.25	Logge	ed (Cuttings from 0-6'
7	Tube quartzite gravel (me Silt, trace Cla	ay (SN	Л)			-	Loose		
8	Shelby Tube Light Brown fine SAND, little Silt, trace white quartzite gravel (SM)								- 338.25 -	Loose	2	
13	7 4 9 11 7	_					-	Loose	9			
26	12 14 16 11 9 Shelb	-	Gray fine to mediur quartzite sand lens		Silt, co	arse white			= 333.25 - -	Mediu	ım I	Dense
>50	15 32 50/2" 24 50/6"	- 20	Brown to gray med SAPROLITE (SM)				-		- = 328.25	Dense		
>50	50/6	-		er Refusal at 21		777777				Very I	Den	se
ore		- - - 25	Biotite Gneiss Rock Run 1: 21.5 to 26.5 Recovery: 34.5/60 RQD: 19/34.5 inches	feet inches = 57%					- - - 323.25			
Rock Core		- - -30	Biotite Gneiss Rock Run 1: 26.5 to 31.5 Recovery: 47/60 in RQD: 10.5/41 inche				- - - 318.25					

Boring/Well ID:

DAA-2sb

Project:		Green R	Ridge Recycling	Boring/Well A	rea:	West Are	a		Drilling Rig	g Type	e: Track Rig CME 45
Project #:		1802011	7-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	3.25" Hollow Stem Auger
_ocation:		Cumber	land County, VA	Northing:	372	26996.95			Sampling	Metho	od: Split Spoon
Start Date	e:		02/25/19	Easting:	118	589988.63			Well Mate	rial:	NA
Completio	on Date	:	02/25/19	Ground Eleva	ation:	355.61			Screen Siz	ze:	NA
Contracto			dge Drilling	Total Depth:		51.5'			Filter Pack		NA
Driller:		James .	New Property and P	TOC Elevatio	n:	NA			Seal:	_	tonite Pellets/Hydrated
N Value	Blow	Donth		escription (USCS		1	Geol	Well Log	ELEV		Remarks
5 5 6 7 9 6 12 20 21 24 23 21	232432343335334334563336557117911381100895527112860111120111289558314	- 5 - 5 - 10 - 15 20 25 	Red SILT, some fire Red to brown fine Simicaceous (SM) Light Tan to gray voof biotite, micaceous	some Silt, micac	eous,	Dry (SM)			-345.61 -345.61 -335.61 -335.61 -335.61	Loose Loose Media	se
21	10 10 11 21								-	Medi	ium Dense
24	8 9 15 28										

Boring/Well ID:

DAA-2sb

Page 2 of 2

Project:		Green I	Ridge Recycling	Boring/Well A	rea:	West Area	a		Drilling Rig	g Type	Track Rig	CME 45
Project #	:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	3.25" Hollo	w Stem Auger
Location:		Cumbe	rland County, VA	Northing:	37	26996.95			Sampling I	Metho	d: Split Spoo	on
Start Date	e:		02/25/19	Easting:	11:	589988.63			Well Mate	rial:	NA	1
Completi	on Date		02/25/19	Ground Eleva	tion:	355.61			Screen Siz	ze:	NA	
Contracto	-		dge Drilling	Total Depth:		51.5'			Filter Pack	C :	NA	
Driller:		James	F 60 10 10 10 10 10 10 10 10 10 10 10 10 10	TOC Elevation	n:	NA		_	Seal:	1	onite Pellets/H	vdrated
N Value	Blow	Dent		scription (USCS			Geol	Well Log	FLEV		Rema	
36 13 23 50/6" 35 50/4" >50 21 33 50/6"		- - - - 40	Light Tan very fine S micaceous, dry (SM Light Tan to white fin)					_ _ _ _ _315.61 _	Dens	е	
>50	21 33 50/6"	- - - 45 -	Brown to gray fine S		, trace	e white			- - 310.61 -	Very	Dense	
>50 28 50/3"	- - - 50 -		er Refusal at 51		,,,,,,,			- - -305.61 -	Very	Dense		
		- - 55 - - - - - - -							- -300.61 - - - -295.61			
		- - -65 - -							- - - 290.61 - -			

Boring/Well ID:

DAA-3sb

Project:	Gr	reen R	lidge Recycling	Boring/Well Are	ea:	West Area	a .		Drilling Rig	д Туре	:	Track Rig CME 45
Project #:	18	02011	7-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	3	3.25" Hollow Stem Auger
ocation:	Cu	umber	land County, VA	Northing:	372	26777.44			Sampling	Metho	d:	Split Spoon
Start Date:			02/25/19	Easting:	11	590399.87			Well Mate	rial:	NA	,
Completion	Date:		02/25/19	Ground Elevati	ion:	348.39			Screen Siz	ze:	NA	
Contractor:	Bli	ue Ric	dge Drilling	Total Depth:		60'			Filter Pack	c:	NA	
Oriller:	Ja	mes J	lones	TOC Elevation:	:	NA			Seal:	Bent	onit	e Pellets/Hydrated
	ow unts	Depth	De	scription (USCS)			Geol	Well Log	ELEV.			Remarks
10 W 11 W 12 W 12 W 1	369236893369335633556223463355/34433334/3333/3333/3333/3333/333	*15 	Reddish brown SILT bands, damp, (MH)	, some Clay, little	e fine	e Sand, iron			- 338.39 - 338.39 - 338.39 - 338.39 - 338.39 - 318.39 - 318.39	Logg Stiff Media Media Media	um s	Stiff

Boring/Well ID:

DAA-3sb

Page 2 of 2

Project		Green	Ridge Recyc	ling	Boring/Well A	rea:	West Are	a		Drilling Rig	д Туре	: T	rack Rig CME 45
roject	#:	180201	17-030201		Logged By:	D.	Coakley			Drilling Me	ethod:	3.2	5" Hollow Stem Auge
_ocatio	n:	Cumbe	rland Count	y, VA	Northing:	37	26777.44			Sampling	Metho	d: S	plit Spoon
Start Da	ate:		02/25/19		Easting:	11:	590399.87			Well Mate	rial:	NA	
Comple	etion Da	ate:	02/25/19		Ground Eleva	tion:	348.39			Screen Siz	ze:	NA	
Contrac	ctor:	Blue R	idge Drilling		Total Depth:		60'			Filter Pack	c:	NA	
Oriller:		James	Jones		TOC Elevatio	n:	NA			Seal:	Bente	onite F	Pellets/Hydrated
N Value	Blow Count		h	Des	cription (USCS	5)		Geol	Well Log				Remarks
14	3 8 10 wh	- - - - 40								- - - - - 308.39	Stiff		
15	wh 3 4 5	- - - -								- - - - 303.39	Mediu	um Stif	f
16	4 7 9 8	- - - - - 50	Brown SIL	T, some C	lay, little very fi	ne Sa	and, wet			- - - - - 298.39	Stiff		
17	3 3 4 7										Mediu	um Stif	f
18	5 6 8 10	= 55 - - -								- 293.39 - - -	Mediu	um Stif	f
	4 7	60	No Auge	er Refusal,	Drilling depth t	ermin	ated at 60'			- 288.39	Mediu	ım Stif	.
19	4 7 9 13											ani oui	

Boring/Well ID:

DAA-4sb

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a		Drilling Rig	д Туре	:	Track Rig CME 45
Project #	# :	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	1 3	3.25" Hollow Stem Auger
Location	:	Cumbe	rland County, VA	Northing:	372	26498.37			Sampling	Metho	d:	Split Spoon
Start Dat	te:		02/26/19	Easting:	118	590790.11			Well Mate	rial:	N/	1
Complet	ion Date	e:	02/26/19	Ground Eleva	tion:	347.44			Screen Siz	ze:	N/	\
Contract	or:	Blue Ri	dge Drilling	Total Depth:		39'			Filter Pack	C:	N/	1
Driller:		James	Jones	TOC Elevation	n:	NA			Seal:	Bent	oni	te Pellets/Hydrated
N Value	Blow		n De	escription (USCS)		Geol	Well Log				Remarks
7	63433334	- - - 5 - - -	Brown CLAY and S No Recovery; Loos No Recovery; Loos	e mud					- - - 342.44 - - - - - 337.44	Logg	ed (Cuttings from 0-6'
9	wh 633335		Light Tan fine SAN	, some Silt, trace Clay (SM)					-	Loose		
5	๎ ©ฺ ๛๚๛๛๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	- - 15 - -	Brown fine SAND a	nd Silt, some Cla	ay (SN	л)			- = 332.44 - -	Loose	9	
2 8 7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- - 20 - -	Brown fine SAND, s biotite bands (SM)	some Silt, little Cl	lay, m	icaceous,			- - 327.44 - - -	Loose	Э	se
10	4 6 8	- 25							- 322.44	Loose	е	
9	3695								-	Loose	Э	
16	7 9 12 wh	- -30	Brown fine SAND, s	ID, some Silt, little Clay, biotite bands,					- ■317.44	Mediu	ım	Dense
12	5 7 10 4	1	white quartzite coar						-	Mediu	ım	Dense
27	10 17 26 8	-						-	Mediu	ım	Dense	

Boring/Well ID:

DAA-4sb

Page 2 of 2

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a		Drilling Rig	y Type	:	Track Rig CME 45
Project #	# :	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	3	3.25" Hollow Stem Auger
_ocation	:	Cumber	rland County, VA	Northing:	37	26498.37			Sampling I	Metho	d:	Split Spoon
Start Dat	te:		02/26/19	Easting:	11	590790.11			Well Mater	rial:	NA	
Complet	ion Date	e:	02/26/19	Ground Eleva	tion:	347.44			Screen Siz	ze:	NA	
Contract	or:	Blue Ri	dge Drilling	Total Depth:		39'			Filter Pack	ς:	NA	
Driller:		James .	Jones	TOC Elevation	n:	NA			Seal:	Bente	onit	e Pellets/Hydrated
N Value	Blow		n De	escription (USCS			Geol	Well Log				Remarks
>50	22 50/6" 50/4"	-	Brown fine SAND, white quartzite coa (SM)	little Silt, little Cla rse Sand lenses, ger Refusal at 3	y, bic SAP	ROLITE		Log	- 307.44 302.44 297.44 292.44 287.44	Very		se
		-							-			

Boring/Well ID:

DAA-5pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Drillin	g Rig Type	Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Drillin	g Method:	4.25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	37	26297.92		Samp	oling Method	d: Split Spoon
Start Da	ate:		02/26/19	Easting:	11	590385.49		Well	Material:	2" Schedule 40 PVC
Comple	tion Da	ate:	02/26/19	Ground Eleva	tion:	356.49		Scree	en Size:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		35.5		Filter	Pack:	#2 Sand
Oriller:		James .	Jones	TOC Elevation	n:	356.50		Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count		n De	escription (USCS)		Geol W		.EV.	Remarks
		- - - - - 5	Red fine SAND and	l Silt, some Clay	(ML)			- 35	Logge	ed Cuttings from 0-7'
31	50/6" Shelby Tube		Light Tan to Red fin Micaceous (SM)	ie SAND, little Si	lt, tra	ce gravel,			Dense	е
								34	6.49	
>50	65/4'								Very	Dense
>50	25 50/6'	- - 15 -						34	1.49 Very l	Dense
>50	65/4'	- - - 20 -	Light Tan fine to me	ed SAND, little Si	ilt. Mi	caceous.		33	6.49	
>50	50/2'	_ 25 	Damp, SAPROLITE				25252E	-33	1.49 Very I	Dense
>50	50/1'	- - - - - -						= 32 = 32 = -	6.49 Very	Dense
		7	Aug	er Refusal at 35	5.5'			1		

Boring/Well ID:

DAA-6pz

Project:		Green F	Ridge Recycling	Boring/Well A	Area:	West Are	a	Drilling	Rig Type	Track Rig CME 45
Project :	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling I	Method:	4.25" Hollow Stem Auger
_ocation	n:	Cumbe	rland County, VA	Northing:	37	26430.01		Samplin	g Metho	d: Split Spoon
Start Da	ate:		02/26/19	Easting:	11	589325.34		Well Ma	iterial:	2" Schedule 40 PVC
Comple	tion Da	ite:	02/26/19	Ground Eleva	ation:	332.92		Screen	Size:	0.10 Slot
Contrac	tor:	Blue Ri	dge Drilling	Total Depth:		23.5'		Filter Pa	ack:	#2 Sand
Oriller:		James .	Jones	TOC Elevation	n:	335.19		Seal:	Bent	onite Pellets/Hydrated
N Value	Blow Count		n De	escription (USCS	5)			'ell ELE\	1.	Remarks
			Red SAND, some \$	Silt, some Clay (ML)				Logg	ed Cuttings from 0-6'
7 8 15 >50	8 4 4 4 5 4 15 5 10 20 31 50/6"		Light brown fine SA Micaceous (SM) Light brown fine SA bands, Micaceous Very light tan fine SA	ND, some Silt, t (SM)	race (Clay, biotite		327.9	Loose Loose 2 Media	
30 >50	10 14 16 26 10 24 50/6"	-15 - -	Light brown fine SA				30000000000000000000000000000000000000	- 317.9	Dens	ee Dense
>50	50/6"	10.0	and biotite bands, I			re (SM)		= 312.9	Very	Dense
		- - 25 - - - - - 30		er Refusal at 23				- 307.9 302.9 		

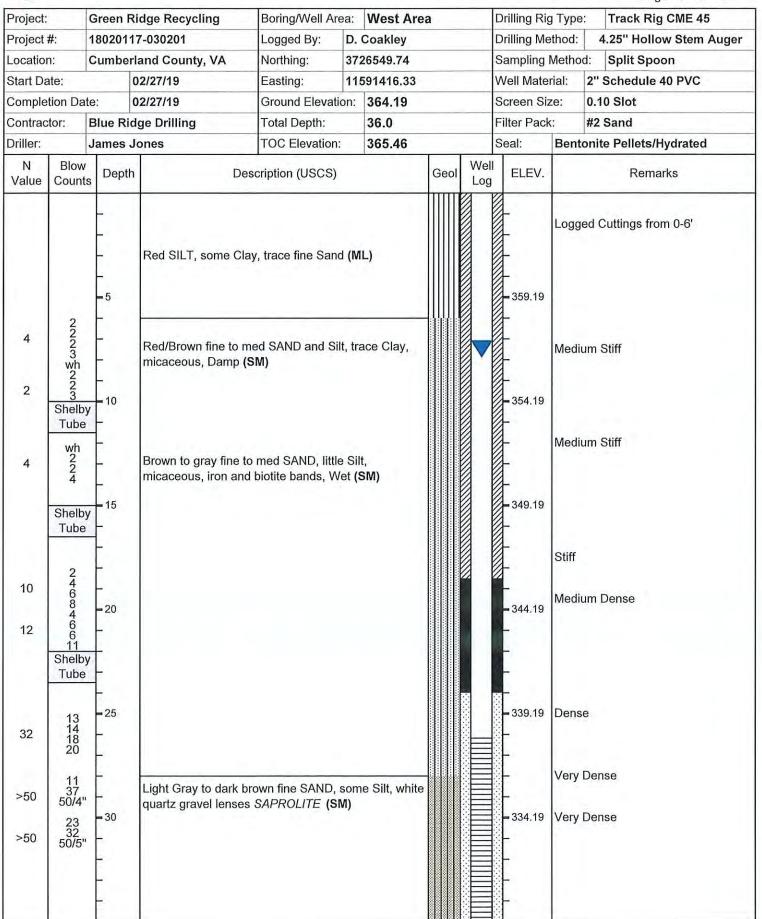
Boring/Well ID:

DAA-7sb

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a		Drilling Rig	у Туре	:	Track Rig CME 45
Project #	# :	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:		3.25" Hollow Stem Auger
ocation	n:	Cumber	rland County, VA	Northing:	37	25536.82			Sampling I	Metho	d:	Split Spoon
Start Da	te:		02/27/19	Easting:	11	590630.30			Well Mate	rial:	NA	4
Complet	tion Date	e:	02/27/19	Ground Eleva	tion:	352.90			Screen Siz	ze:	NA	4
Contract			dge Drilling	Total Depth:		63.5'			Filter Pack		NA	
Driller:		James .		TOC Elevatio	n:	NA			Seal:			te Pellets/Hydrated
	Blow	T				1.26.2		Well		M-10-10-0	2.4	
N Value	Counts		De	escription (USCS	5)		Geol	Log				Remarks
15 19 21	9 19 11 8 9 7	- - - 5 - - - - -	Green to gray fine smottling (SM)						- - - - - - - - - - - - - - - - - - -	Mediu	um	Cuttings from 0-5' Dense Dense
24	12 8 9 10 14 5 9 15 27 17 36	- - 15 - -							- - 337.90 - -			Dense
66 28	30 31 6 13 15	20	Light tan to brown S		, biotif	te mica			- = 332.90 -	Very	Dei	nse
>50 >50		-	bands, mottled (SN	9					- - - - 327.90	Very	Dei	nse
>50	50/2" -25		gravel and			- - - - 322.90 - -	Very	Dei	nse			

Boring/Well ID:

DAA-7sb


Page 2 of 2


Project:		Green I	Ridge Recycling	Boring/Well A	rea:	West Area	a		Drilling Rig	Type	:	Track Rig CME 45
roject #	# :	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:		3.25" Hollow Stem Auger
_ocation	:	Cumbe	rland County, VA	Northing:	37	25536.82			Sampling	Metho	d:	Split Spoon
Start Da			02/27/19	Easting:	11	590630.30			Well Mate	rial:	NA	
Complet	ion Date	e:	02/27/19	Ground Eleva	ation:	352.90			Screen Siz	ze:	NA	V
Contract			dge Drilling	Total Depth:		63.5'			Filter Pack	ς:	NA	
Driller:		James		TOC Elevation	n:	NA			Seal:			te Pellets/Hydrated
N Value	Blow	Dont		escription (USCS		1.01	Geol	Woll				Remarks
>50 >50	26 38 50/5+ 33 50/3" 4 7 9 13		Tan fine SAND, so biotite mica lenses Red brown SILT, s (SM)	, mottled (SM)					-312.90 -307.90 -302.90	Very Dense 307.90 Medium Dense		nse Dense
26	5 11 14 19 8 9 9 23	- - - - - - - - - - - - - -	Red SILT, some C	lay, little Sand (S l	M)				- - 297.90 - - - - - 292.90			Dense Dense
		- - -65 - -		ger Refusal at 63		,,,,,,,			- - - 287.90 - -			

Boring/Well ID:

DAA-8pz

Boring/Well ID:

DAA-8pz

Page 2 of 2

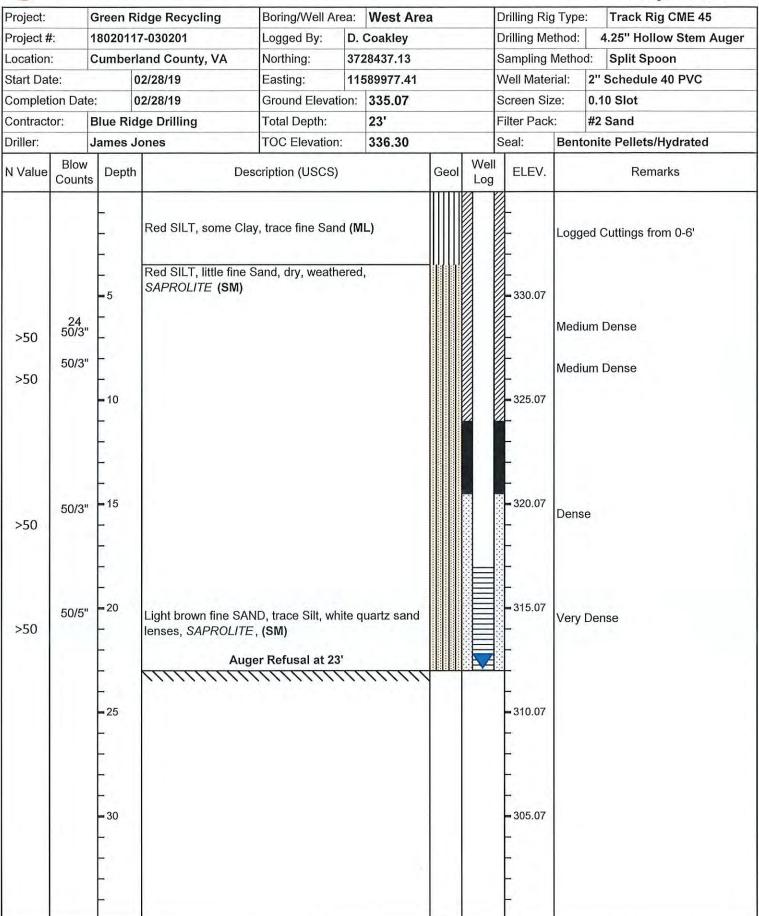
Project:	Green F	Ridge Recycling	Boring/Well Ar	ea:	West Area		Drilling Rig	Type:	Track Rig CME 45
Project #:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	thod:	4.25" Hollow Stem Auger
		rland County, VA	Northing:		26549.74		Sampling	Method	d: Split Spoon
Start Date:	1 1 1 1 1 1 1 1	02/27/19	Easting: 1159		591416.33		Well Mate		2" Schedule 40 PVC
Completion Dat		02/27/19	Ground Elevation: 364.19			Screen Siz		0.10 Slot	
		dge Drilling	Total Depth:	36.0		Filter Pack		#2 Sand	
	James .	79	TOC Elevation				Seal:		onite Pellets/Hydrated
N Blow				_		Ne We	SII I		
Value Counts	s	n De	escription (USCS)		G	Geol Lo			Remarks
>50	-40 -45 -50 -60 -65	Au	ger Refusal at 36				- 324.19 - 319.19 - 314.19 - 309.19 - 309.19 - 299.19	Very I	Dense

Boring/Well ID:

DAA-9pz

Project:	Green F	Ridge Recycling	Boring/Well A	rea:	Boring/Well Area: West Area					Track Rig CME 45		
Project #:	180201	17-030201	Logged By:	D.	Coakley			Orilling Me	thod:	4.25" Hollow Stem Auger		
ocation:	Cumber	land County, VA	Northing:	372	25486.86		5	Sampling Method: Split Spoon Well Material: 2" Schedule 40 PVC				
Start Date:		02/28/19	Easting:	118	591101.07		٧					
Completion I	Date:	02/28/19	Ground Elevation: 365.25 Total Depth: 25'				5	Screen Siz	ze:	0.10 Slot		
Contractor:	Blue Ri	dge Drilling				F	ilter Pack	: ;	#2 Sand			
Oriller:	James .	Jones	TOC Elevation	ղ:	365.68		5	Seal:	Bentonite Pellets/Hydrated			
N Blo Value Cou		De:	scription (USCS))		1(-0011	ell og	ELEV.		Remarks		
8 5 32 42 23 32 32 32 32 32 32 32 32 32 32 32 32	5 10	Red/brown fine SAN micaceous (SM) Red/Brown fine SAN quartz lenses (SM) Brown fine SAND, s lenses, SAPROLITE Aug	ome Silt, white one Silt, white Silt,	e Clay	us, white			360.25 - 355.25 - - 350.25	Loose Loose Loose Loose Mediu Mediu	m Dense m Dense m Dense		

Boring/Well ID:


DAA-10pz

Project		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Drilling Rig	g Type	: Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	ethod:	4.25" Hollow Stem Auger
ocatio	n:	Cumber	rland County, VA	Northing:	37	26549.74		Sampling	Metho	d: Split Spoon
Start D	ate:		02/28/19	Easting:	11	591416.33	Well Mate	rial:	2" Schedule 40 PVC	
Comple	etion Da	ate:	02/28/19	Ground Eleva	Ground Elevation: 339.45			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:	Total Depth: 31'			Filter Pack	C :	#2 Sand
Oriller:		James .	Jones	TOC Elevatio	n:	341.55		Seal:	Bent	onite Pellets/Hydrated
N Value	Blow Count		n D	escription (USCS	5)		Geol We			Remarks
		- - - - - 5	Gray/Green SILT, Red/Brown SILT, li					334.45	Logg	ed Cuttings from 0-6'
49	18 16 33 49 12 18 31 50/5'	-10	Light Brown fine Sand lenses (SM)	AND, some Silt, ς	gray/v	vhite quartz		3 29.45		Dense Dense
>50	25 40 50/5"	_ _ 15 _						324.45	Very	Dense
>50	33 50/5"	- 20	Light brown SILT a	and fine Sand, dry	ı, SAI	PROLITE		319.45	Very	Dense
24 >50	13 13 11 18 29 50/2"	- 25	Dark brown fine SA lenses; SAPROLIT		ay qu	artz sand	230000000000000000000000000000000000000	- - - 314.45		
>50	50/5'	- - - - - 30	A	iger Refusal at 3	11'			- 309.45		

Boring/Well ID:

DAA-11pz

Boring/Well ID:

DAA-12pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Drilling Rig	Type:		Track Rig CME 45
Project #:	t:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	thod:	4	.25" Hollow Stem Auger
ocation:	:	Cumbe	rland County, VA	Northing:	37	28364.31		Sampling Metho		od: Split Spoon	
Start Date	te:		03/04/19	Easting:	g: 11590423.89			Well Mater	ial:	2" 5	Schedule 40 PVC
Completio	ion Da	te:	03/04/19	Ground Elevation: 330.07				Screen Siz	e:	0.1	0 Slot
Contracto	or:	Blue Ri	dge Drilling	Total Depth:		25.5'		Filter Pack			
Oriller:		James .	Jones	TOC Elevation	n:	331.20		Seal:	Bento	onit	e Pellets/Hydrated
N Value (Blow Counts		n De	scription (USCS	i)		Geol We				Remarks
	45765787479868131491051491215781631450/4" 50/4"			ned SAND, some D, some Silt, mic O, some Silt, mic (SM)	e Silt, caciou caciou artz sa (SM)	as, (SM)		-325.07 -325.07 -315.07 -315.07 -305.07	Logge		cuttings from 0-6'

Boring/Well ID:

DAA-13pz

Project:		Green	Ridge Recycling	Boring/Well A	Area:	West Are	а	Dri	Iling Rig T	ype:	Track Rig CME 45	
roject	#:	180201	17-030201	Logged By:	D.	Coakley		Dri	lling Meth	od:	4.25" Hollow Stem Auger	
ocatio	n:	Cumbe	rland County, VA	Northing:	37	27352.27		Sa	mpling Me	ethod	: Split Spoon	
Start Da	ate:		03/04/19	Easting:	11	590973.86		We	ell Materia	l:	2" Schedule 40 PVC 0.10 Slot	
Comple	tion Da	ite:	03/04/19	Ground Eleva	ation:	357.96		Sci	reen Size			
Contrac	ctor:	Blue R	idge Drilling	Total Depth:		34'		Filt	ter Pack:	- 1	#2 Sand	
Oriller:	-	James	Jones	TOC Elevation	n:	359.36		Se	al: E	ento	nite Pellets/Hydrated	
N Value	Blow		h De	ecription (IISCS)			ell	ELEV.		Remarks		
12 5 ₇ 6 ₃		- - - - 5 -	Red SILT, some Cl Red SILT, little Cla (MH)		d, mid	caceous,			352.96	d Cuttings from 0-6' m Dense		
10	4576346&345645763366455636	- - -10	Red fine SAND, litt	aceous,			347.96 N	1ediu	m Dense			
9	4 5 6 4								N	lediu	m Dense	
12	576								M	1ediu	m Dense	
9	3366	- 15							342.96 N	1ediu	m Dense	
10	45563		Tan to Brown fine S micaceous, (SM)	SAND, little Silt, t	trace	Clay,	Medium De	m Dense				
14	8	- -20						337.96 N	1ediu	m Dense		
16	7995	-								1ediu	m Dense	
19	10 9 8 4	-										
17	7 10 13	- 25						040	332.96 N	1ediu	m Dense	
22	0 10 12 8								V	ery [)ense	
39	86799510984710381028917264421998 50/4	-30	Red/Brown fine SA bands, micaceous		on an	d biotite		-	327.96 V	ery [Dense	
41	22 19 29	-							200	ery [Dense	
-JU			I Silt; SAPROLITE, (SM)									

Boring/Well ID:

DAA-14pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	E	rilling Rig	Type:	Track Rig CME 45		
Project 7	#:	180201	17-030201	Logged By:	D.	Coakley		D	rilling Met	thod:	4.25" Hollow Stem Auger		
_ocatior	n:	Cumbe	rland County, VA	Northing:	37	26467.15		S	Sampling N	/lethod:	d: Split Spoon		
Start Da	ite:	- 1	03/05/19	Easting:	11	591831.94		V	Vell Mater	ial: 2	2" Schedule 40 PVC		
Complet	tion Date	e:	03/05/19	Ground Eleva	Ground Elevation: 380.13			S	Screen Siz	e: (0.10 Slot		
Contrac	tor:	Blue Ri	dge Drilling	Total Depth:		42'		F	ilter Pack:	: #	#2 Sand		
Driller:	ller: James Jones			TOC Elevatio	n:	381.44		S	Seal:	Bento	nite Pellets/Hydrated		
Samp ID			n De	escription (USCS)			Well Log	ELEV.		Remarks		
15 14 15 8	36924590369034463356343434	- - - - - - - - - - - - - - - - - - -	Red SILT, some CI	ay, trace fine Sal	nd (M	L)			- - 370.13 - - -	Stiff Stiff Stiff Mediur			
7		-								Loose			
~	6	-20							360.13				
9	5 5 5	_	Red SILT and fine gravel lenses, (SM)		, whit	e quartzite			Loose				
9	4634552455456833474461257111467		3/4/5/ /5/1000 (/5/1 /							Loose			
11	568	- 25							355.13	Mediu	m Dense		
7	3 4 7	E								Loose			
10	4 4 6 12								10/23/21	Loose			
18	5 7	-30	I Hade Con CAND	lime on the	na a	a mula ta co			- 350.13	Mediu	m Dense		
10	11		Lite tan fine SAND,			s, wnite				wealul	III DOING		
13	quartzite sand lenses, micaceou				/					Mediu	m Dense		

Boring/Well ID:

DAA-14pz

Page 2 of 2

Geol			Metho rial: ze: c: Bent Medi	4.25" Hollow Stem Auger d: Split Spoon 2" Schedule 40 PVC 0.10 Slot #2 Sand onite Pellets/Hydrated Remarks um Dense Dense
Geol	Well	Well Mater Screen Size Filter Pack Seal: ELEV.	rial: ze: C: Bent Medi	2" Schedule 40 PVC 0.10 Slot #2 Sand onite Pellets/Hydrated Remarks um Dense um Dense
Geol	Well	Screen Siz Filter Pack Seal: ELEV.	Bent Medi	0.10 Slot #2 Sand onite Pellets/Hydrated Remarks um Dense um Dense
Geol	Well	Filter Pack Seal: ELEV.	Media Media	#2 Sand onite Pellets/Hydrated Remarks um Dense um Dense
Geol	Well	Seal: ELEV.	Media Media	nonite Pellets/Hydrated Remarks um Dense um Dense
Geol	Well	Seal: ELEV.	Media Media	nonite Pellets/Hydrated Remarks um Dense um Dense
Geol	Well	ELEV.	Medi Medi	Remarks um Dense um Dense
		- - - - 340.13	Medi	um Dense
		- 330.13 325.13 320.13 315.13		
			- - - 320.13	- - - - 320.13 - - -

Boring/Well ID: DAA-15pz-s

Project	:	Green F	Ridge Recycling	Boring/Well A	rea:	West Are	ea		Drilling Rig Ty	pe:		Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Metho	d:	4	.25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	Northing: 3730413.59 Easting: 11591080.07				Sampling Me	ng Method		Split Spoon
Start D	ate:		03/05/19	Easting:					Well Material		2" 5	Schedule 40 PVC
Comple	etion Da	ate:	03/05/19	Ground Eleva	tion:	n: 329.98			Screen Size:	1	0.10	0 Slot
Contra	ctor:	Blue Ri	dge Drilling	Total Depth:	Total Depth: 34'				Filter Pack:	1	#2 \$	Sand
Oriller:		James	Jones	TOC Elevation	า:	331.15			Seal: Be	nto	nite	e Pellets/Hydrated
N Value	Blow Count		n D	escription (USCS	cription (USCS) Goal V			Vell .og	ELEV.			Remarks
	Shelby Tube	- 10 			Брz-d				324.98 319.98 319.98 314.98 309.98 -304.98			

Boring/Well ID: DAA-15pz-d

Project		Green F	Ridge Recycling	Boring/Well A	\rea:	West Are	a	Drilling Rig Type: Track Rig CME 45					
^o roject	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Method: 4.25" Hollow Stem A					
ocatio	n:	Cumbe	rland County, VA	Northing:	37	30411.63		Sampling	Metho	d: Split Spoon			
Start D	ate:		03/05/19	Easting:	11	11591070.98		Well Mate	rial:	2" Schedule 40 PVC			
Comple	tion Da	ate:	03/05/19	Ground Eleva	vation: 329.71			Screen Si	ze:	0.10 Slot			
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:	Total Depth: 39'			Filter Pac	K :	#2 Sand			
Oriller:		James	Jones	TOC Elevatio	n:	331.34		Seal:	Seal: Bentonite Pellets/Hydrated				
N Value	Blow		n D	escription (USCS	1 10					Remarks			
		- - - - -5	Brown fine SAND,	some Silt (SM)				324.71	Logg	ed Cuttings from 0-6'			
66	22 28 38 50/5"		Very light Tan fine SAPROLITE (SM)		bands,			Very	Dense				
>50	28 47 50/5"	-10 -10	Very light Tan fine gravel lenses, SAI	e quartz		319.71	Very	Dense					
64	12 18 46 50/5"	- - - 15 -						314.71	Very	Dense			
>50	40 50/5"	- - -20						309.71	Very	Dense			
>50	50/3"	- - 25						- - 304.71 -	Very	Dense			
Rock Core		Auger Refusal at 29' Biotite Gneiss Rock Core Run 1: 29 to 34 feet Recovery: 59/60 inches = 98% RQD: 12/59 inches = 25%						- - 299.71 - - -					

Boring/Well ID: DAA-15pz-d

Project:		Green F	Ridge Recycling	Boring/Well Ar	ea:	West Are	a		Drilling Rig	Туре	: Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Met	hod:	4.25" Hollow Stem Auger
Locatio	n:	Cumber	rland County, VA	Northing:	37	30411.63			Sampling N	/letho	d: Split Spoon
Start Da	ate:		03/05/19	Easting:	11	591070.98			Well Materi	ial:	2" Schedule 40 PVC
Comple	tion Da	ite:	03/05/19	Ground Elevati	ion:	329.71			Screen Size	e:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		39'			Filter Pack:		#2 Sand
Driller:		James .	Jones	TOC Elevation	•	331.34			Seal:	Bent	onite Pellets/Hydrated
N Value	Blow Count		n De	escription (USCS)			Geol	Well Log			Remarks
Rock Core		-40 -45 -50 -55 -60 -65	Biotite Gneiss Rock Run 2: 34 to 39 fee Recovery: 56.5/60 RDQ: 14/56.5 inch	et inches = 94%					= 289.71 = 284.71 = 279.71 = 274.71 = 269.71 = 264.71		

Boring/Well ID:

DAA-16pz

Project	*	Green I	Ridge Recycling	Boring/Well A	Area:	East Area	1		Drilling Rig	Туре	e: Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	4.25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	37	31369.62			Sampling I	Metho	d: Split Spoon
Start Da	ate:		03/06/19	Easting:	11:	593538.41			Well Mater	rial:	2" Schedule 40 PVC
Comple	tion Da	ate:	03/06/19	Ground Eleva	ation:	323.02			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		26'			Filter Pack	:	#2 Sand
Oriller:		James	Jones	TOC Elevation	n:	324.60	,		Seal:	Bent	onite Pellets/Hydrated
N Value	Blow		h De	scription (USCS	S)		I (appli	Vell _og	ELEV.		Remarks
	61 26 35 50/5" 21 >50 37 50/3"	- - - - - 5	Dark brown SILT, s						318.02	Logg	ed Cuttings from 0-6'
61	13 26 35 50/5	ŀ	Brown line SAND, 8	onie Siit, trace	Clay (SIW)					Dense
>50	37 50/3'	-							-	Very	Dense
>50	41 50/3'	UE.							313.02	Very	Dense
>50	50/6'	- - - 15	Light Tan fine SANI) with lenses of	Grav/	'Green Silt			308.02	Very	Dense
>50	50/4'	- - - - - 20	mottling, SAPROLI		Gluy,	orean one,	200000000000000000000000000000000000000		- - - - 303.02	Very	Dense
	50/3'	- - - - 25	Aug	ger Refusal at 2	26'				_ _ _ _ _ 298.02		
>50		- - - -30	A second to the second part of the second se				DEFINITION OF		- 293.02		
		-							-		

Boring/Well ID:

DAA-17sb

Project:		Green I	Rid	ge Recycling	Boring/Well A	\rea:	East Area			Drilling Rig	Туре	:	Track Rig CME 45
roject	#:	180201	17-	030201	Logged By:	D.	Coakley			Drilling Me	thod:	:	3.25" Hollow Stem Auger
ocatio	n:	Cumbe	rlar	nd County, VA	Northing:	37	31469.53			Sampling I	Metho	d:	Split Spoon
Start Da	ate:		03/	/06/19	Easting:	11:	593827.25			Well Mater	rial:	NA	
Comple	tion Da	ate:	03/	/06/19	Ground Eleva	ation:	332.69			Screen Siz	ze:	NA	
Contrac	tor:	Blue Ri	dge	e Drilling	Total Depth:		22.5'			Filter Pack	:	NA	
Oriller:		James	Jor	nes	TOC Elevatio	n:	NA			Seal:	Bente	onit	te Pellets/Hydrated
N Value	Blow Count		h	Des	cription (USCS	5)		Geol	Well Log				Remarks
24	24 8 16 15 9 23 11 12 16 8 19 11 40 24 24 12 59 22 37 50/5"		F	Red to brown SILT a	nd Clay (MH)					- - - 327.69			Cuttings from 0-6' Dense
	16 15 9 11 12 16	-	L	ight Tan very fine S	AND, some Sil	t, dry	(SM)			-			Dense
28	8 12 16 19 11	- 10	C	Green to gray fine S/	AND, little Silt,	dry (S	M)			- 322.69 -			Dense
40 59	24 24 12 22	- - = 15		Light Tan very fine S	AND, some Sil	t, dry,				- - - 317.69	Mediu Very		Dense
59	37 50/5'	' [-" -		Red to brown fine SA	AND some SII	T bio	tite bands			-	very	Dei	150
76	19 39 37 41	- - 20 -		SAPROLITE (SM)		1, 510	into barrao,			- - 312.69 -	Very	Der	nse
	41	-			r Refusal at 22		777777			-			
		- 25 -								- 307.69 -			
		- - -30								- - - 302.69			
		-								-			
		+								-			
		-								-			

Boring/Well ID:

DAA-18pz

Project		Green F	Ridge Recycling	Boring/Well A	Area:	East Area		Drilling Rig	g Type	Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	ethod:	4.25" Hollow Stem Auger
ocatio.	n:	Cumbe	rland County, VA	Northing:	37	30329.89		Sampling	Metho	d: Split Spoon
Start Da	ate:		03/07/19	Easting:	11:	594565.79		Well Mate	rial:	2" Schedule 40 PVC
Comple	etion Da	ate:	03/07/19	Ground Eleva	ation:	342.12		Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		27'		Filter Pack	C :	#2 Sand
Oriller:		James .	Jones	TOC Elevatio	n:	343.46		Seal:	Bent	onite Pellets/Hydrated
N Value	Blow Count	LIANT	n De	escription (USCS	5)		Geol We			Remarks
4 4 6 9	32212222233434554 Shelb Tube		Brown fine SAND, s gravel lenses (SM) Brown fine SA bands, micacious (SM)	some Silt, trace (Clay, v	white quartz		337.12	Loose Loose Loose Mediu	Э
25 53	7 11 14 17 8 18 35 50	- -20					22	= 322.12 -	Dens	е
	18 50/2"	- - - - 25	Brown/Gray very fir sand lenses, SAPR		t, whit	e quartz		- - - - -317.12	Very	Dense
>50	50/2"	- - -30 -		ger Refusal at 2				-312.12 -	Very I	Dense

Boring/Well ID: DAA-19pz-s

Project		Gree	n Ri	dge Recycling	Boring/Well A	Area:	East Area	a	Drilling Rig	g Type	Track Rig CME 45
⊃roject	#:	1802	0117	7-030201	Logged By:	D.	Coakley		Drilling Me	ethod:	4.25" Hollow Stem Auger
_ocatio	n:	Cum	berla	and County, VA	Northing:	37	32042.79		Sampling	Method	d: Split Spoon
Start Da	ate:		0	3/07/19	Easting:	11	594480.40		Well Mate	rial:	2" Schedule 40 PVC
Comple	etion Da	ate:	0	3/07/19	Ground Eleva	ation:	325.34		Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue	Rid	ge Drilling	Total Depth:		21.5'		Filter Pack	ς:	#2 Sand
Oriller:		Jame	es Jo	ones	TOC Elevation	n:	325.94	,	Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count		epth	De	escription (USCS	3)		Geol We			Remarks
		1 1 1		Red SILT, some Cl	ay, trace fine Sa	ınd (M	H)			Logge	ed Cuttings from 0-6'
14	7 6 8 12 8 10 24 42 45 45 50/4	- - 5 - -		Brown/Gray/Green Mottled (SM)	fine SAND, little	Silt, t	race Clay,		320.34		um Dense
0.4	8	F								Dens	е
34	24 42	1							315 34	Vami	Danas
. 50	16 45	-10)						315.34	very	Dense
>50	50/4'	'									
>50	50/4'	- - - 15	i	Light Tan very fine SAPROLITE (SM)	SAND, little Silt,	loose	, dry,	20000000000000000000000000000000000000	- - -310.34	Very	Dense
>50	50/2'	- - - 20	Ŕ	Aug	er Refusal at 2				- - - 305.34	Very	Dense
		- - - 25 - -							- - -300.34 - -	Very	Dense
		- 30 - - -							- 295.34 - - -		

Boring/Well ID: DAA-19pz-d

Project:	Green	Ridge Recycling	Boring/Well A	rea:	East Area		I	Drilling Rig	Type:	
Project #:	180201	17-030201	Logged By:	D.	Coakley		1	Drilling Me	thod:	4.25" Hollow Stem Auger
ocation:	Cumbe	erland County, VA	Northing:	373	32039.94		5	Sampling N	Method	Split Spoon
Start Date:		03/11/19	Easting:	11	594488.33		1	Well Mater	rial:	2" Schedule 40 PVC
Completion D	ate:	03/11/19	Ground Eleva	tion:	325.18		5	Screen Siz	e:	0.10 Slot
Contractor:	Blue R	idge Drilling	Total Depth:		33'		F	Filter Pack	:	#2 Sand
Oriller:	James	Jones	TOC Elevation	ո։	327.09			Seal:	Bento	nite Pellets/Hydrated
N Blow Value Coun		th De	escription (USCS)		Geol	Well Log	ELEV.		Remarks
	-5 - - - - - - - - - - - - - - - - - -	Soil sampling and owell log for paired S						-310.18 -310.18 -310.18 		
Rock Core	- - - - 25 - - - - - 30	Biotite Gneiss Roc Run 1: 23 to 28 fe Recovery: 58.5/60 RQD: 23/58 inches Biotite Gneiss Roc Run 2: 28 to 33 fe Recovery: 57.5/60 RDQ: 37/57,5 inch	k Core et inches = 97% s = 39% k Core et					- - - - 300.18 - - - - - - 295.18	Sand	caved into core hole from 29 t

Boring/Well ID:

DAA-20pz

Project:		Green	Ridge Recycling	Boring/Well A	Area:	East Area	1		Drilling Rig	Type:	Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	4.25" Hollow Stem Auger
.ocatio	n:	Cumbe	erland County, VA	Northing:	37	32042.79			Sampling N	Nethod	: Split Spoon
Start Da	ate:		03/11/19	Easting:	11	594480.40			Well Mater	ial:	2" Schedule 40 PVC
Comple	tion Da	ite:	03/11/19	Ground Eleva	ation:	312.39			Screen Siz	e:	0.10 Slot
Contrac	tor:	Blue R	idge Drilling	Total Depth:		34'			Filter Pack		#2 Sand
Oriller:		James		TOC Elevation	n:	313.62			Seal:	Bento	nite Pellets/Hydrated
N Value	Blow	Dent		escription (USCS	5)		Geol	Well			Remarks
30 35 47 52	7 13 17 18 10 18 17 21 21 21 21 21 21 21 21 21 21 21 21 21	- - - 5 - - - - 10	Red SILT, some C Red very fine SAN Gray/Green very fine course sand lense.	D, some Silt, trac	ce Cla	y (SM)			- 307.39 - 302.39	Logge Dense Vey D Very I	ense
39 >50	40 50/5'								2 97.39		Dense
>50			Light Tan very fine course sand lense						292.39	Very [
>50 >50	37 50/6" 50/6" 20 34 50/4"	- - - - 25	Red/Brown fine SA SAPROLITE (SM)		oose,	dry,				Very [Dense Dense
>50	50/1'	- - 30 -	Au	uger Refusal at	34				- - 282.39 - - -		

Boring/Well ID:

DAA-21sb

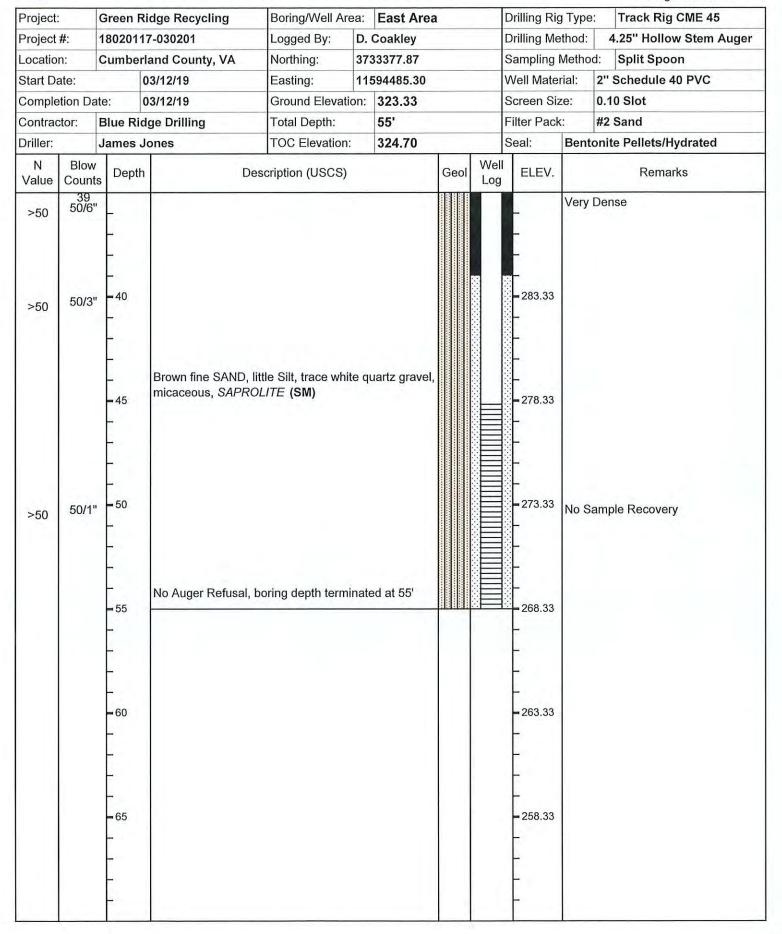
Project		Green	Ridge Recycling	Boring/Well A	Area:	East Area	l		Drilling Rig	д Туре	:	Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:		3.25" Hollow Stem Auge
.ocatio	n:	Cumbe	rland County, VA	Northing:	37	33279.40			Sampling I	Metho	d:	Split Spoon
Start D	ate:		03/12/19	Easting:	11	594045.62			Well Mater	rial:	NA	
Comple	etion Da	ate:	03/12/19	Ground Eleva	ation:	315.47			Screen Siz	ze:	NA	\
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		47'			Filter Pack	ς:	NA	()
Oriller:		James	Jones	TOC Elevation	n:	NA			Seal:	Bent	onit	te Pellets/Hydrated
N Value	Blow Count		h E	escription (USCS	S)		Geol	Well Log				Remarks
		-	Red Brown SILT a	and Clay (MH)					4			
22	692	- - - 5 -	Red fine SAND, so medium sand lens		y with	gray			- - -310.47			Cuttings from 0-6' Dense
29	6 9 138 137 122 166 11 129 72 165 132 355 50/6"	- - - 10	Brown fine SAND,	some Silt, trace	Clay (SM)			- - - 305.47			Dense
23	11 12 19 7 12	-							-			Dense
28	16 25 13	Ē	Gray to white fine	SAND, little Silt (\$	SM)				Ē			Dense
57	35 50/6" 41 50/4"	- 15							- 300.47	Very	Der	nse
>50	50/4"	F							-	Very	Der	nse
		- -20							- = 295.47 -			
>50	32 50/2"	-	Light brown fine S	AND and Silt SA	PROI	ITE (SM)			E	Very	Der	nse
>50	25 50/5"	= 25 - - - - - = 30 - -	Light brown fine S	AN∪ and Silt, SA	PROL	IIE (SM)			- 290.47 - - - - - 285.47 -	Very	Der	nse

Boring/Well ID:

DAA-21sb

Project:		Green R	idge Recycling	Boring/Well A	rea:	East Area			Drilling Rig	ј Туре		Track Rig CME 45
Project	#:	1802011	7-030201	Logged By:	D.	Coakley			Drilling Me	thod:	3	3.25" Hollow Stem Auger
.ocatio	n:	Cumber	land County, VA	Northing:	37	33279.40			Sampling N	Method	d:	Split Spoon
Start Da	ate:	(03/12/19	Easting:	11	594045.62			Well Mater	rial:	NA	
Comple	tion Da	ite:	03/12/19	Ground Eleva	tion:	315.47			Screen Siz	ze:	NA	52.
Contrac	ctor:	Blue Ric	lge Drilling	Total Depth:		47'			Filter Pack	:	NA	
Oriller:		James J	ones	TOC Elevation	1:	NA			Seal:	Bento	onit	e Pellets/Hydrated
N Value	Blow		De	scription (USCS))		Geol	Well				Remarks
>50 >50 >50	45 50/4" 50/5"	- - - - 40 - -	Light brown fine SAI gravel, SAPROLITE Gray fine SAND, little Gray fine SAND, little	E (SM) le Silt, dry, <i>SAPF</i>	ROLI [*]	re (SM)		LOG	- 275.47 - 275.47 - 270.47 - 265.47 - 260.47 - 255.47	Very	Der	ise
		- 65							= 250.47			
		-							-			

Boring/Well ID:


DAA-22pz

Project	0	Green I	Ridge Recycling	Boring/Well A	rea:	East Area	1	D	rilling Rig	Type:		Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley		D	rilling Met	hod:	4	1.25" Hollow Stem Auger
.ocatio	n:	Cumbe	rland County, VA	Northing:	37	33377.87		S	ampling M	/lethoc	i:	Split Spoon
Start D	ate:		03/12/19	Easting:	11:	594485.30		V	Vell Materi	ial:	2"	Schedule 40 PVC
Comple	etion Da	ate:	03/12/19	Ground Eleva	tion:	323.33		S	creen Size	e:	0.1	0 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		55'		F	ilter Pack:		#2	Sand
Oriller:		James	Jones	TOC Elevatio	n:	324.70		S	eal:	Bento	nit	e Pellets/Hydrated
N Value	Blow Count		h De	escription (USCS	5)			Vell .og	ELEV.			Remarks
6 5 7	233422342324334323343336556756687	- - - 5 - - - - 10	Red SILT, some Cl Tan SILT, some fine Reddish brown fine loose (SM)	ie Sand, trace Cla	ay, m	oist (SM)			-318.33 - -313.33 - -313.33	Logge Mediu Loose Loose Loose	ım :	Cuttings from 0-6'
6 6 11	3343336556756681	-15 - - - - -20	Gray/Green fine SA quartz sand lenses		micace	eous, white			- - - 303.33	Mediu	m l	Dense Dense
>50	30 50/5'									Very [Der	ise
>50	50/6	- 25 -							- 298.33	Very [Der	nse
>50	18		Brown fine SAND, gravel, micaceous,			quartz			- - - 293.33 - - -	Very [Der	ise

Boring/Well ID:

DAA-22pz

Boring/Well ID: DAA-23pz-s

Project:		Green F	Ridge Recycling	Boring/Well A	Area:	East Area	1	Drillir	ng Rig Typ	e: Track Rig CME 45
Project		180201	17-030201	Logged By:	D.	Coakley		_	ng Method	
_ocatio	n:	Cumber	rland County, VA	Northing:	37	33647.76		Sam	oling Meth	od: Split Spoon
Start Da	ate:		03/13/19	Easting:	11	595024.84		Well	Material:	2" Schedule 40 PVC
Comple	tion Da	ite:	03/13/19	Ground Eleva	ation:	318.63		Scree	en Size:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		33'		Filter	Pack:	#2 Sand
Driller:		James .	Jones	TOC Elevatio	n:	320.61		Seal:	Ber	tonite Pellets/Hydrated
N Value	Blow Count		De De	scription (USCS	3)			/ell og El	EV.	Remarks
	2	- - - - 5 -	Red SILT and Clay,	little fine Sand	(ML)			31	Log	ged Cuttings from 0-6'
6 5	2 3 2 2 2 3 2 Shelby		Red fine SAND, sor sand lenses, black I			ite Quartz		30	Loo Loo 8.63	
5	3 2 3 3 3 2 3 5 Shelby	- - - 15	Reddish brown fine micaceous (SM) Dark gray fine SANI	ce Clay,		30	Loo 3.63 Loo			
20 47	3 5 15 18 12 20 27 35	- - -20	Red fine SAND, sor		ay (SN	Л)		- 29 		lium Dense se
30 >50	8 10 20 31 24 29 50/6"		White fine SAND, tr	ace Silt (SM)			800000000000000000000000000000000000000	- - - 29		lium Dense / Dense
23	15 12 11 15 Shelby Tube	30	Gray fine SAND, littl SAPROLITE (SM)	le Silt, trace Cla	y, mic	aceous,		- 28	Med 8.63	lium Dense
>50	41 50/3"	-	Aug	ger Refusal at 3	3'					

Boring/Well ID: DAA-23pz-d

Project:		Green I	Ridge Recycling	Boring/Well A	rea:	East Area		Drilling F	Rig Typ	e: Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling I	Method:	4.25" Hollow Stem Auger
Locatio	n:	Cumbe	rland County, VA	Northing:		33658.36		Samplin		
Start Da			03/12/19	Easting:	11:	595026.15		Well Ma	T	2" Schedule 40 PVC
Comple	tion Da	te:	03/13/19	Ground Eleva	tion:	317.94		Screen	Size:	0.10 Slot
Contrac			dge Drilling	Total Depth:		47'		Filter Pa		#2 Sand
Driller:		James		TOC Elevation	ղ:	318.67		Seal:	-	tonite Pellets/Hydrated
N Value	Blow	Dont		cription (USCS)			Geol We	ell Ele/		Remarks
		- 10 - 10 - 15 - 20 - 25 - 30	Soil sampling and clawell log for paired Sh					307.9 -307.9 -307.9 -297.9	4	

Boring/Well ID: DAA-23pz-d

Project:		Green F	Ridge Recycling	Boring/Well Ar	ea:	East Area			Drilling Rig Ty	oe:	Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Method	i:	4.25" Hollow Stem Auger
ocatio	n:	Cumber	land County, VA	Northing:	37	33658.36			Sampling Meth	od:	Split Spoon
Start Da	ate:		03/12/19	Easting:	11	595026.15			Well Material:	2	" Schedule 40 PVC
Comple	etion Da	ate:	03/13/19	Ground Elevati	on:	317.94			Screen Size:	0	.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		47'			Filter Pack:	#	2 Sand
Oriller:		James .		TOC Elevation	:	318.67			Seal: Be	nton	ite Pellets/Hydrated
N Value	Blow Count		De:	scription (USCS)			Geol	Wel			Remarks
Rock Core		-40 -40 -45 -50 -55 -60 -65	Bitotite Gneiss Rock Run 1: 37 to 42 feet Recovery: 54.5/60 in RQD: 32.5/60 inches Biotite Gneiss Rock Run 1: 42 to 47 feet Recovery: 58/60 inches RQD: 50.5/58 inches	Core nches = 90% es = 54% Core ches = 96%					= 277.94 = 277.94 = 272.94 = 267.94 = 262.94 = 257.94 = 252.94		

Boring/Well ID:

DAA-24pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	East Area	5		Drilling Rig	Type:	Track Rig CME 45
roject	#:	1802011	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	4.25" Hollow Stem Auger
ocatio.	n:	Cumber	land County, VA	Northing:	37	34520.89			Sampling I	Method	d: Split Spoon
Start Da	ate:		03/13/19	Easting:	11:	593898.96			Well Mate	rial:	2" Schedule 40 PVC
Comple	tion Da	ate:	03/13/19	Ground Eleva	tion:	289.87			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue Ric	dge Drilling	Total Depth:		23'			Filter Pack	:	#2 Sand
Oriller:		James .		TOC Elevatio	n:	291.19			Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count	I I DANTI	n De	escription (USCS)		1(-0011	Vell .og	ELEV.		Remarks
5 8 10 8 11 25 >50	Count 22333335655554444676588887750/3"		Red SILT, some Clark Red fine SAND, sor sand lenses, micac Tan fine SAND, sor (SM)	me Silt, trace Claeous (SM) me Silt, trace Claeous (SM) me Silt (SM) me Silt (SM) me Silt (SM)	ay, whay, whay, whay, wh	nite quartz nite quartz		_og	- 284.87 - 279.87	Loose Loose Loose Mediu	ed Cuttings from 0-6'
		- 30							- 259.87		

Boring/Well ID: DAA-25pz-s

Project:		Green F	Ridge Recycling	Boring/Well Ar	ea:	East Area	a	Drilling R	ig Typ	e: Track Rig CME 45
Project	#:		17-030201	Logged By:	D.	Coakley		Drilling N	lethod	: 4.25" Hollow Stem Auger
Locatio	n:	Cumbe	rland County, VA	Northing:	37	33647.76		Sampling	Meth	od: Split Spoon
Start Da			03/14/19	Easting:		595024.84		Well Mat		2" Schedule 40 PVC
Comple	etion Da		03/14/19	Ground Elevat		326.38		Screen S	ize:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		37'		Filter Pag	ck:	#2 Sand
Driller:		James		TOC Elevation	ı:	328.45		Seal:		tonite Pellets/Hydrated
N Value	Blow Count	Dont		escription (USCS)			Geol W	ell ELEV		Remarks
	Shelb Tube	- - - y = 20	Soil sampling and dwell log for paired E					321.38 -321.38 -316.38 -311.38 -306.38 -301.38 -296.38	3	

Boring/Well ID: DAA-25pz-s

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	East Area		Drilling Rig Typ	_	Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Method:		4.25" Hollow Stem Auger
ocatio	n:	Cumber	rland County, VA	Northing:	37	33647.76		Sampling Metho	od:	Split Spoon
Start Da	ate:		03/14/19	Easting:	11	595024.84		Well Material:	2"	Schedule 40 PVC
	etion Da		03/14/19	Ground Eleva		326.38		Screen Size:	0.	10 Slot
Contrac			dge Drilling	Total Depth:	2000	37'		Filter Pack:	1	Sand
Oriller:		James		TOC Elevation	ı.	328.45				te Pellets/Hydrated
	Blow		Jones	100 Elevation	**	020.40	Wel			
N Value	Count		n De	escription (USCS))	(Geol Log			Remarks
		e c	Aug	ger Refusal at 37	7"			-		
		-	mmini			111111	BBBB CA			
		-						-		
		-						-		
		- 40						- 286.38		
		-						-		
		-						-		
		-						+		
		<u> </u>						<u> </u>		
		- 45						- 281.38		
		_ 25								
44										
		[₅₀						- 276.38		
		- 50						276.36		
		7								
		=								
7.1		-						-		
								The second		
		- 55						- 271.38		
		-						+		
		-						-		
		-					- 1	-		
		-					- R	-		
		-60						- 266.38		
		-								
		_								
		- 65						- 261.38		
		-03						201.00		
		-								

Boring/Well ID: DAA-25pz-d

Project		Green F	Ridge Recycling	Boring/Well A	rea:	East Area	P.	D	rilling Rig	Type:	Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley		D	rilling Met	thod:	4.25" Hollow Stem Auger
.ocatio	n:	Cumber	rland County, VA	Northing:	37	30467.21		S	Sampling N	/lethoc	d: Split Spoon
Start D	ate:		03/14/19	Easting:	11:	593049.11		٧	Vell Mater	ial:	2" Schedule 40 PVC
Comple	etion Da	ite:	03/14/19	Ground Eleva	tion:	326.58		S	Screen Siz	e:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		47'		F	ilter Pack:		#2 Sand
Oriller:		James .	Jones	TOC Elevation	ղ:	327.70		S	Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count		n De	escription (USCS)		Geol We		ELEV.		Remarks
6 5 4 5 9 11	6 5 4 5 9 11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	- - - - - - - - - - - - - - - - - - -	Red SILT, some Classification (SM) Brown fine SAND, s (SM)	d Sand, trace Cl	ay, m	icaceous		9	- 321.58 - 316.58 	Loose Loose Loose Loose Mediu	
15 45 >50	56 9 14 11 16 29 50/5" 25 50/6"	- - - - 25	Brown med to fine Sand white quartz co							Mediu	um Dense Dense
>50	50/3"		Gray med to fine S/micaceous, SAPRO		race	gravel,			- - - 296.58 - -	Very [Dense

Boring/Well ID: DAA-25pz-d

Project		Green F	lidge Recycling	Boring/Well Ar	ea:	East Area			Drilling Rig Ty	pe:	Track Rig CME 45
roject	#:	1802011	7-030201	Logged By:	D.	Coakley			Drilling Metho	d:	4.25" Hollow Stem Auge
ocatio	n:	Cumber	land County, VA	Northing:	37	30467.21			Sampling Met	hod	Split Spoon
Start Da	ate:		03/14/19	Easting:	11	593049.11			Well Material:	12	2" Schedule 40 PVC
Comple	tion Da	ite:	03/14/19	Ground Elevat	ion:	326.58			Screen Size:	(0.10 Slot
Contrac	ctor:	Blue Ric	dge Drilling	Total Depth:		47'			Filter Pack:	#	#2 Sand
Oriller:		James .		TOC Elevation	3	327.70			Seal: Be	nto	nite Pellets/Hydrated
N Value	Blow	Denth		escription (USCS)			Geol	Wel	I FLEV		Remarks
Sock Core	50/5"		Biotite Gneiss Roc Run 1: 37 to 42 fer Recovery: 58/60 in RQD: 41/58 inches Biotite Gneiss Roc Run 1: 42 to 47 fer Recovery: 58.5/60 RQD: 33.5/58.5 inc	k Core et nches = 96% s = 70% k Core et nches = 97%					- 286.58 - 281.58 - 276.58 - 271.58 - 266.58 261.58 		

Boring/Well ID:

DAA-26pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Area	a		Orilling Rig	Туре	: Track Rig CME 45
roject	#:	1802011	17-030201	Logged By:	D.	Coakley		E	Orilling Met	thod:	4.25" Hollow Stem Auger
ocatio	n:	Cumber	land County, VA	Northing:	37	31202.27		S	Sampling N	/letho	d: Split Spoon
Start Da	ate:		03/27/19	Easting:	11:	591698.15		V	Well Mater	ial:	2" Schedule 40 PVC
Comple	tion Da	ite:	03/27/19	Ground Eleva	ation:	304.20		S	Screen Siz	e:	0.10 Slot
Contrac	tor:	Blue Ri	dge Drilling	Total Depth:		48'		F	Filter Pack		#2 Sand
Oriller:		James .	Jones	TOC Elevatio	n:	305.08		S	Seal:	Bent	onite Pellets/Hydrated
N Value	Blow	LIGHT	D D	escription (USCS	5)		1130011	Vell .og	ELEV.		Remarks
5	32334345347835704602480257094730456934	-	Red SILT, some C		astic ((MH)			-	Soft	
7	3 4 5 3	_								Medi	um Stiff
11	4 7 8 3	- 5						299.20	Medi	um Stiff	
12	5 7 10 4		Light brown SILT a	ind Clay, elastic (Stiff		
16	6 10 12 4	- 10	Light brown SILT,		ine S	and			294.20	Stiff	
18	8 10 12 5	-	mottling, elastic (M	IH)						Very	Stiff
17	7 10 9 4	-								Very	Stiff
20	7 13 10 4	- 15							289.20	Very	Stiff
11	5 6 9 3	_								Stiff	
9	-	- 20							284.20	Medi	um Stiff
6	8 wh 3 4 wh	-								Medi	um Stiff
4	2 2 4 wh									Soft	
4	2 2 3 wh	- 25 -	Light brown SILT, mottling, elastic (M		fine S	Sand,			279.20	Soft	
9	6 3 13 wh	-								Medi	um Stiff
13	wh224h223h633hh768h246370338	-30							274.20	Stiff	
6	2 4 6 3	_								Medi	um Stiff
17	7 10 23		Light brown fine S/	AND some Silt +	race (Clay (SM)				Stiff	

Boring/Well ID:

DAA-26pz

Page 2 of 2 Project: Green Ridge Recycling Boring/Well Area: **West Area** Drilling Rig Type: Track Rig CME 45 Project #: D. Coakley 4.25" Hollow Stem Auger 18020117-030201 Logged By: **Drilling Method:** Northing: Sampling Method: Split Spoon Location: Cumberland County, VA 3731202.27 Well Material: 2" Schedule 40 PVC Start Date: 03/27/19 Easting: 11591698.15 03/27/19 Ground Elevation: Screen Size: 0.10 Slot Completion Date: 304.20 Contractor: Blue Ridge Drilling Total Depth: 48' Filter Pack: #2 Sand Driller: James Jones TOC Elevation: 305.08 Seal: Bentonite Pellets/Hydrated N Blow Well Description (USCS) Geol ELEV. Remarks Depth Value Counts Log 15 Medium Dense Medium Dense 17 Light brown fine SAND, some Silt, little Sand, trace -40 264.20 Clay, (SM) Medium Dense 18 Dense 30 57 259.20 Very Dense 45 Light brown fine fine SAND, little Silt, SAPROLITE (SM) >50 Auger Refusal at 48' 50 254.20 249.20 - 55 244.20 60 65 239.20

Boring/Well ID:

DAA-27sb

Project:		Green I	Ridge Recyclin	g li	Boring/Well A	\rea:	West Area			Drilling Rig	Туре		Track Rig CME 45
Project		-	17-030201	_	_ogged By:		Coakley			Drilling Me			3.25" Hollow Stem Auge
ocation		120	rland County, \		Northing:		30609.14			Sampling I		d:	Split Spoon
Start Da			03/27/19	-	Easting:		590530.73			Well Mater		NA	[- V - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Comple			03/27/19		Ground Eleva		331.70			Screen Siz	ze:	NA	(
Contrac			dge Drilling		Total Depth:		21.5'			Filter Pack		NA	
Oriller:		James			ΓΟC Elevatio	n:	NA			Seal:	Bento	onit	e Pellets/Hydrated
N Value	Blow		n	Descr	iption (USCS	S)		Geol	Well Log				Remarks
		-	Brown SILT,	some Cla	y, trace fine S	Sand	(MH)			-			
32 >50	6 12 20 60/4" 50/6"	- - - - 5	Brown to dark (SM)	k gray fine	SAND, som	ie Silt,	trace Clay			- - - 326.70	Mediu	um I	Dense
>50	24 50/3"									-	Very	Der	nse
48	24 25 23 39 18 22 37 50/4" 50/3"	-10								321.70	Very	Der	nse
59	22 37 50/4" 50/3"	: -	Light Tan ver quartzite grav			white			-	Very	Der	nse	
30	14 12 8 7 14	- - 15 -								- -316.70	Mediu	um l	Dense
>50	11 50/4" 50/5"									-	Very	Der	nse
>50	50/3"	20								311.70			
>50		-	//////		Refusal at 21		777777			-			
										E			
		- 25								306.70			
		-								-			
		-								004.70			
		- 30								- 301.70			
		-								-			
		-								-			
		-								-			
										-			

Boring/Well ID:

DAA-28sb

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Area	a		Drilling Rig	Туре	:	Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	3	3.25" Hollow Stem Auger
ocatio	n:	Cumber	rland County, VA	Northing:	373	30566.92			Sampling I	Metho	d:	Split Spoon
Start Da	ate:		03/28/19	Easting:	11	591349.73			Well Mater	rial:	NA	
Comple	tion Da	ite:	03/28/19	Ground Eleva	tion:	320.28			Screen Siz	e:	NA	
Contrac	tor:	Blue Ri	dge Drilling	Total Depth:		44'			Filter Pack		NA	
Oriller:		James	Jones	TOC Elevation	n:	NA			Seal:	Bento	onit	e Pellets/Hydrated
N Value	Blow Count		n Des	scription (USCS	5)		Geol	Well Log				Remarks
6 12 13 44 23 >50	2247366106670514430371211287426"	- - - - - - - - - - - - - - - - - - -							- - - - 315.28 - - - - - - - - - -	Mediu Stiff Stiff Dense Mediu	e um [Dense
79 55 >50	27 42 37 28 11 24 31 21 18 50/0"	- - 15 -	Brown to red fine SA	rown to red fine SAND, some Silt, trace Clay, white						Very Very Very	Den	ise
65	20 24 41 38 36 50/5"	- 20 -	quartzite sand lense (SM)						- 300.28	Very	Den	ise
>50									E	Very	Den	se
>50	29 50/4"	20							- 295.28	Very	Den	se
>50	28 50/6"								F	Very	Den	se
>50	50/6"	3	Dad fire CAND	oo Cilk inner en 1	blam	hord-						
61	28 25 36 50/6" 50/5"	- 30 - -	Red fine SAND, son SAPROLITE, (SM)	ne Siit, Iron and	olitola	e pands,			- 290.28 -	Very	Den	se
>50	50/6"	7							-			

Boring/Well ID:

DAA-28sb

Project:	1-1	Green F	Ridge Recycling	Boring/Well Are	a: V	lest Area	a		Drilling Rig	Туре	: T	rack Rig CME 45
roject	#:	180201	17-030201	Logged By:	D. Co	akley			Drilling Met	thod:	3.2	5" Hollow Stem Auge
ocatio	n:	Cumbe	rland County, VA	Northing:	37305	566.92			Sampling N	/letho	d: S	plit Spoon
Start Da	ate:		03/28/19	Easting:	11591	1349.73			Well Mater	ial:	NA	
Comple	tion Da	te:	03/28/19	Ground Elevation	on: 3	20.28			Screen Siz	e:	NA	
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:	4	4'			Filter Pack		NA	
Driller:		James .	Jones	TOC Elevation:	N	Α			Seal:	Bento	onite F	Pellets/Hydrated
N Value	Blow Count	Dont		Description (USCS)			Geol	Well				Remarks
>50	26 50/3"	- 40 - 40 - 45 - 50 - 55 - 60 - 65 - 65	white quartzite gra (SM)	ome Silt, iron and biavel lenses, SAPRO	LITE ,	Wet			- 280.28 - 280.28 	Very	Dense	

Boring/Well ID:

DAA-29pz

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Di	rilling Rig	Type	Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Di	rilling Met	thod:	4.25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	37	29450.80		Sa	ampling N	/lethod	d: Split Spoon
Start Da	ate:		03/28/19	Easting:	11	591602.94		W	ell Mater	ial:	2" Schedule 40 PVC
Comple	etion Da	ate:	03/28/19	Ground Eleva	tion:	347.84		Sc	creen Siz	e:	0.10 Slot
Contrac			dge Drilling	Total Depth:	2.5-100-2	34.5'		Fi	Iter Pack:		#2 Sand
Oriller:		James		TOC Elevation	n.	349.41			2422 1. 1212 0.		onite Pellets/Hydrated
N N	Blow		Uones	100 Elevation		040.41	O We		Juli.	Donice	onite i eneterny arateu
Value	Count		n De	escription (USCS)		Geol Lo		ELEV.		Remarks
7 10 17 30 31 41 45 59 >50	2347246946118612854231123813277431827743182750/6		Brown fine SAND, s (SM)						- 342.84 337.84 	Mediu Mediu Densa Densa Very I	um Dense um Dense e
>50	15 32 50/4"			OAND O						Very I	Dense
>50	13 31 50/5"	- D	Light Tan very fine SAPROLITE (SM)	SAND, SOME SIII	i, irac	e gravei,				Very I	Dense
67	15 27 40 50/6"	- 25					154	-51	- 322.84	Very I	Dense
>50	26 36 50/4"		Red/Brown fine SA SAPROLITE (SM)	ND, some Silt, lit	tle Cl	ay				Very I	Dense
>50	20 29 50/4"		SAL NOLITE (SW)					=	- - 317.84	Very I	Dense
>50	50/5"		Dark Gray fine SAN	ND, little Silt, SAF	PROL	ITE (SM)			_		
			Aug	er Refusal at 34	1.5'	,,,,,,					

Boring/Well ID:

DAA-30sb

roject		Green	Ridge Recycling	Boring/Well A	rea:	West Area			Drilling Rig	g Type:		Track Rig CME 45
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	3.	25" Hollow Stem Auger
ocatio	n:	Cumbe	rland County, VA	Northing:	37	29480.24			Sampling	Method	d:	Split Spoon
tart Da	ate:		03/28/19	Easting:	11	590921.73			Well Mate	rial:	NA	
omple	etion Da	ite:	03/28/19	Ground Eleva	tion:	339.93			Screen Siz	ze:	NA	
ontrac	ctor:	Blue R	idge Drilling	Total Depth:		31'			Filter Pack	C:	NA	
riller:		James	Jones	TOC Elevatio	n:	NA			Seal:	Bento	onite	Pellets/Hydrated
N Value	Blow Count		h Do	escription (USCS	5)		Geol	Well Log				Remarks
>50 >50	50/5" 50/2" 50/3"	- - - 5	Red SILT, little Cla	y, trace fine Sand	d (ML)			- - - - - 334.93	Very I	Dens	e
>50 >50	15 30 50/3" 50/6"	-							- - - - 329.93	Very I	Dens	e
>50	50/3"	-	Light Tan fine SAN gravel, SAPROLIT		white	quartzite			_	Very I	Dens	e
>50 >50	41 50/4"	- - 15 -							- - - 324.93 -	Very I	Dens	e
>50	50/5"	- - - - -							- - - 319.93 - - -	Very l	Dens	e
>50	44 50/4"	- -25 -	Dark gray fine SAN	ND and Silt, <i>SAPI</i>	ROLIT	TE (SM)			- -314.93 -	Very	Dens	e
>50	50/3"	- - - 30 -	Au	iger Refusal at 3	11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- - -309.93 - -	Very	Dens	e

Boring/Well ID: DAA-31pz

Boring/Well ID:

DAA-32sb

os ue Ridg mes Jo Depth			3772 1115 tition:	31' NA	Geol		Drilling Me Sampling I Well Mater Screen Siz Filter Pack Seal: ELEV. 344.82	Method rial: I re: I Bento Very S	NA NA NA nite Pellets/Hydrated Remarks
03 03 ue Ridg mes Jo Depth	3/29/19 3/29/19 ge Drilling ones Des	Easting: Ground Eleva Total Depth: TOC Elevation scription (USCS)	11tion:	591011.48 349.82 31' NA	Geol	Well	Well Mater Screen Siz Filter Pack Seal: ELEV.	rial: I re: I Bento Very S	NA NA NA nite Pellets/Hydrated Remarks
03 ue Ridg mes Jo Depth	3/29/19 ge Drilling ones Des Red SILT and Clay,	Ground Eleval Total Depth: TOC Elevation scription (USCS)	tion:) (ML)	349.82 31' NA	Geol	Well	Screen Siz Filter Pack Seal: ELEV.	Pe: III Bento Very S	NA NA nite Pellets/Hydrated Remarks
mes Jo Depth	ge Drilling ones Des Red SILT and Clay,	Total Depth: TOC Elevation scription (USCS)	(ML)	31' NA	Geol	Well	Filter Pack Seal: ELEV.	Bento Very S	nite Pellets/Hydrated Remarks Stiff
mes Jo Depth	Des Red SILT and Clay,	TOC Elevation scription (USCS)) (ML)	NA	Geol	Well	Seal: ELEV.	Very S	Remarks Stiff
mes Jo Depth	Des Red SILT and Clay,	TOC Elevation scription (USCS)) (ML)	NA	Geol	Well	ELEV.	Very S	Remarks
5	Red SILT and Clay,	trace fine Sand	(ML)		Geol		- - -	Very D	etiff Dense
5							- - - - - 344.82	Very D	Dense
	Tan very fine SAND	and Silt, dry, SA	APRO	OLITE, (SM)			= 344.82 - -		
	Tan very fine SAND	and Silt, dry, SA	APRC	OLITE, (SM)			-		
	Tan very fine SAND	and Silt, dry, SA	APRO	LITE, (SM)				2.00	
10								Very D	Dense
0.7							- 339.82	Very D	Dense
							-	Very D	ense
15							- - 334.82	Very D	ense
	Gray SILT, some fine	e Sand, <i>SAPRO</i>	LITE	(SM)				Very D	ense
							-	Very D)ense
20							- 329.82	Very D	ense ense
25	Light Tan SILT, som	e fine Sand, <i>SA</i>	PRO	LITE, (SM)			- - - - 324.82	Very D	Dense
30	Aug	er Refusal at 3	1'	777777			- 319.82	Very D	Dense
2	55	Gray SILT, some fin Light Tan SILT, som	Gray SILT, some fine Sand, SAPRO Light Tan SILT, some fine Sand, SA	Gray SILT, some fine Sand, SAPROLITE Light Tan SILT, some fine Sand, SAPROL	Gray SILT, some fine Sand, SAPROLITE (SM) Light Tan SILT, some fine Sand, SAPROLITE, (SM)	Gray SILT, some fine Sand, SAPROLITE (SM) Light Tan SILT, some fine Sand, SAPROLITE, (SM)	Gray SILT, some fine Sand, SAPROLITE (SM) Light Tan SILT, some fine Sand, SAPROLITE, (SM)	Gray SILT, some fine Sand, SAPROLITE (SM) - 329.82	Gray SILT, some fine Sand, SAPROLITE (SM) - Very E - 329.82 Very E - 324.82 Very E - 324.82 Very E - 319.82 Very E

Boring/Well ID:

DAA-33sb

Project:		Green I	Ridge Recycling	Boring/Well A	Boring/Well Area: West Area					Туре		Track Rig CME 45	
roject	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	:	3.25" Hollow Stem Auger	
ocatio	n:	Cumbe	rland County, VA	Northing:	37	27617.39			Sampling I	Metho	d:	Split Spoon	
Start Da	ate:		04/02/19	Easting:	11	591448.65			Well Mater	rial:	NA		
Comple	tion Da	ate:	04/02/19	Ground Eleva	Ground Elevation: 348.20				Screen Size: NA			(
Contrac			dge Drilling	Total Depth:		17'			Filter Pack	:	NA		
Oriller:		James	Jones	TOC Elevation: NA					Seal:	Bentonite Pellets/Hydrated			
N Value	Blow Count		n De)	Geol						Remarks		
7 6 9 10 30 >50 >50	4345324423355345724695218 50/6' 50/0'	- 15	Company of the Compan	some Clay, little	e Silt APRO 7'	(SM) DLITE, (SM)			-	Media Loosa Loosa Media Very	e e e	Stiff	

Boring/Well ID:

DAA-34pz

Project:		Green I	Ridge Recycling	Boring/Well A	rea:	West Are	а	Drilling Ri	g Type	Track Rig CME 45		
Project #	:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	ethod:	4.25" Hollow Stem Auger		
ocation		Cumbe	rland County, VA	Northing:	Northing: 3728241.05			Sampling	Method	d: Split Spoon		
Start Dat	e:		04/02/19	Easting:	11	592007.95	Well Mate	rial:	2" Schedule 40 PVC			
Completi	ion Date	e:	04/02/19	Ground Eleva	tion:	354.70		Screen Si	ze:	e: 0.10 Slot		
Contract	or:	Blue Ri	dge Drilling	Total Depth:		39.5'		Filter Pacl	k: #2 Sand			
Oriller:		James	Jones	TOC Elevation: 355.38				Seal:	Bento	Bentonite Pellets/Hydrated		
N Value	Blow Counts	Dept	h De	escription (USCS)			vell ELEV.		Remarks		
8 7 9	33572345236	- - - - 5 -	Red SILT, some Cl					- - - 349.70	Loose)		
9 7 8 7 9 10 13	335723452365236523444335534345554555635874770 helby	- 10 - 10 15 		Red SILT, some fine Sand, trace Clay, is, white quartz sand lenses (SM)				339.70 334.70				
>50 >50 >50	Tube 22 34 50/5" 32 50/6" 50/5"	- 25 - - - - - - - - -	Brown very fine SA SAPROLITE (SM)		D, some Silt, micaceous,			329.70	Very	Dense Dense Dense		
>50	50/2"								,			

Boring/Well ID:

DAA-34pz

Project:	G	Freen F	Ridge Recycling	Boring/Well A	Boring/Well Area: West Area						Track Rig CME 45		
Project #:	1	802011	17-030201	Logged By: D. Coakley					Drilling Metho	od:	4.25" Hollow Stem Auger		
_ocation:	C	Cumber	rland County, VA	Northing:	37	28241.05			Sampling Me	thod:	d: Split Spoon		
Start Date:			04/02/19	Easting:	11:	592007.95			Well Material	2	2" Schedule 40 PVC		
Completion	n Date:		04/02/19	Ground Eleva		354.70			Screen Size:		0.10 Slot		
Contractor:	ontractor: Blue Ridge Drilling		<u> </u>	Total Depth:		39.5'			Filter Pack:		‡2 Sand		
Driller:		ames .				2400				nite Pellets/Hydrated			
	Blow				122000		Wel						
N Value C	Counts	Depth	De	scription (USCS)			Geol	Log			Remarks		
	50/5"	- 40 - 45 - 50 - 55 60 65	Brown very fine SAN SAPROLITE (SM) Augustian	er Refusal at 39).5'				- 314.70 - 314.70 - 309.70 - 304.70 - 299.70 - 294.70 - 289.70				

Boring/Well ID:

DAA-35pz

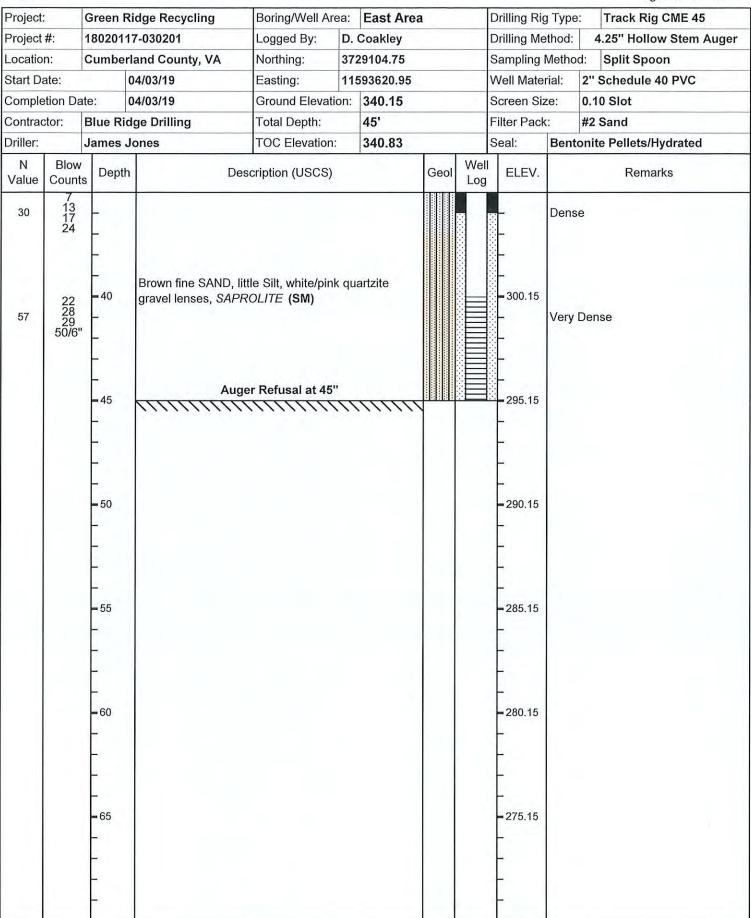
Project:		Green Ri	dge Recycling	Boring/Well Area:	West Are	a	Drilling Rig Type: Track Rig CME 4					
roject a	#:	1802011	7-030201	Logged By: D.	Coakley		Drilling Me	thod:	4.25" Hollow Stem Auger			
ocation	1:	Cumberl	and County, VA	Northing: 372	27576.32		Sampling I	Vletho	d: Split Spoon			
Start Da	ite:	C	4/03/19	Easting: 118	592108.08		Well Mater	2" Schedule 40 PVC				
Complet	tion Dat	e; 0	4/03/19	Ground Elevation:	365.58		Screen Siz	0.10 Slot				
Contrac	tor:	Blue Rid	ge Drilling	Total Depth:	38'		Filter Pack	#2 Sand				
Oriller:		James J	ones	TOC Elevation:		Seal: Bentonite Pellets/Hydrated						
Samp ID	Blow Count		De	scription (USCS) Geol Wo					Remarks			
7	13453345223312232233	_ _ _ _ _ _5	Red CLAY, little Sil	t (ML)			360.58	Loos				
5	223312	-						Loos				
5	232233	10	Red SILT, some CI (SM)	ay, little fine Sand, mid	caceous		355.58	Loos				
5	Shelb Tube						350.58	Loos	е			
8	2324344433453558567							Loos	e			
7	3 3 4 5 3	- -20		fine SAND, some Silt,			345.58	Loos	е			
10	5 5 8 5		wnite quartz gravel	lenses, micaceous (S	ivi)			Loos	е			
13	6 7 7 Shelb Tube						340.58	Medi	um Dense			
47	8 19 28 15 8 20 23 23 8 18 25 40	E						Dens	e			
43	20 23 23 8	-30			¥25.00		335.58	Dens	e			
43	18 25 40		Gray to Light brown gravel, micaceous,	n fine SAND, some Silf (SM)			Dens	e				
		2				1						

Boring/Well ID:

DAA-35pz

Project:		Green I	Ridge Recycling	Boring/Well A	Boring/Well Area: West Area						:	Track Rig CME 45	
Project:	#:	180201	17-030201	Logged By:	Logged By: D. Coakley				Drilling Me	thod:	thod: 4.25" Hollow Stem		
ocation	n:	Cumbe	rland County, VA	Northing:	Northing: 3727576.32				Sampling I				
Start Da	ite:		04/03/19	Easting:		592108.08			Well Mater		7	Schedule 40 PVC	
1.2 1.4 1.0	tion Dat	e:	04/03/19	Ground Eleva		365.58			Screen Siz			0 Slot	
Contrac			dge Drilling	Total Depth:	4-0161	38'			Filter Pack		_	Sand	
Oriller:		James		TOC Elevation				Seal:			Bentonite Pellets/Hydrated		
Samp	Blow	1	20.100					Well					
ID	Count	s Dept	h D	escription (USCS	scription (USCS)		Geol	Log				Remarks	
>50	35 50/6"	-40 -45 -50 -55 -60	Light Tan very fine SAPROLITE (SM) Au	ger Refusal at 3	8'				- 325.58 320.58 315.58 	Very	Den	se	
		- - - 65 -							- - - 300.58				
		-											

Boring/Well ID:


DAA-36pz

Project	:	Green F	Ridge Recycling	Boring/Well A	Area:	East Area	t _i	_	rilling Rig		Track Rig CME 45		
Project					D.	Coakley		D	rilling Me	thod:	4.25" Hollow Stem Auger		
ocatio.	n:	Cumber	land County, VA	Northing:	37	29104.75		S	ampling N	Metho	d: Split Spoon		
Start Da	ate:		04/03/19	Easting:	118	593620.95	W	/ell Mater	ial:	2" Schedule 40 PVC			
Comple	etion Da	te:	04/03/19	Ground Elevation: 340.15					creen Siz	e:	: 0.10 Slot		
Contrac	ctor:	Blue Ric	dge Drilling	Total Depth:		45'	ļ5'				#2 Sand		
Oriller:		James .	Jones	TOC Elevation	n:	340.83			eal:	Bent	onite Pellets/Hydrated		
N Value			De	escription (USCS	cription (USCS)			/ell og	ELEV.		Remarks		
			Red/brown SILT, lit	tle Clay, trace fi	ne Sai	nd (ML)							
7	43462233223443442133233533674699698		Red to Tan SILT, lit	itle Sand, trace (Clay (SM)				Loos	e		
5	3 3 2	- 5					- 335.15 -	Loose	9				
5	2 3 4 4	-	Tan SAND and Silt)				_	Loose	9			
7	3 4 4 2	- 10	Tan/Red/Gray SAN	D, some Silt, litt	le Cla	y, mottling;			- ■330.15	Loose			
4	1 3 3 2		moist (Sivi)							Loose	9		
6	3353		Red SILT, little Clay	noist; (SM)				Loose	e				
9	3 6 7 4	- 15							- 325.15 -	Loose	•		
15	6996	È	Tan SILT, some fin	e Sand, little Cla	y (SM	1)				Mediu	um Dense		
17	9 8 10 5 7	- 20							- - 320.15	Medi	um Dense		
18	11 14 7	-								Mediu	um Dense		
20	10 10 22 15 15 17 28 10 11 12 17	-								Mediu	um Dense		
32	15 17 28 10	- 25 -							- 315.15 -	Dens	е		
23		-	Tan to brown fine S	AND and Silt, tr	ace C	lay (SM)				Mediu	um Dense		
21	8 10 11 16	- 30							- 310.15 -	Medi	um Dense		

Boring/Well ID:

DAA-36pz

Boring/Well ID:

DAA-37sb

Project:		Green F	Ridge Recycling	Boring/Well A	rea:	East Area			Drilling Rig	д Туре	:	Track Rig CME 45	
Project#	:	1802011	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	:	3.25" Hollow Stem Auger	
Location:		Cumber	land County, VA	Northing:	37	29474.02			Sampling	Method: Split Spoon		Split Spoon	
Start Dat	e:		04/04/19	Easting:	11:	594007.15			Well Mate	rial: NA			
Completi	on Date	e:	04/04/19	Ground Eleva	ation:	357.48			Screen Siz	ze:			
Contracto			dge Drilling	Total Depth:		47.5'			Filter Pack	c :	NA		
Driller:				TOC Elevatio	n:	NA			Seal:		onit	te Pellets/Hydrated	
	Blow			592.)	0 1	Well	The serve						
N Value	Counts	Depth	De	escription (USCS	cription (USCS) Geol Log				ELEV.			Remarks	
		-	Red SILT and Clay	(ML)					-				
	3	-	-						1				
14	6 8		1 /-						-	Medi	ım l	Dense	
- 1	10	Α.							-				
10	5	-5	Ett. 6. 8. 9 t. 5 t.						- 352.48	Loose	Э		
	368035573355	-	Red SILT and fine	Sand, trace Clay	y, mic	aceous, dry			L				
8	3	4	(SM)						-	Loose	Э		
	5	_							4				
		L.											
. 4	_	-10							347.48				
10	5								1	Loose	2		
10	5									Loos			
6	2								T.	Loon			
6	3									Loose	3		
	5553233333244343655894	Ī.,							Ī.,				
6	4	- 15							- 342.48	Loose	9		
75.0	3												
7	3	=							-	Loose	9		
1	5	-							-				
13	8	-							-	Medi	ım l	Dense	
	9	-20							- 337.48				
14	7	H	Light tan to brown S	SILT some fine 9	Sand	micaceous			-	Medi	um l	Dense	
	9 Shelby		white quartzite grav		Jana,	micaccous,			2				
-	Tube	L-							-				
	7												
17	8	- 25							332.48	Medi	um l	Dense	
500	12	_							-				
26	7 8 9 10 12 14 15 13 22 20 30 50/6"								L	Medi	ım l	Dense	
	14								L	15.45.50	10.70	Total San Control of the Control of	
35	13									Dens	e		
55	22 42	30							327.48	Della			
\F0	20 30	-30	4.4						527.40	Vome	Dan	200	
>50										Very	uer	150	
	20	Ē							F		E07.1		
64	20 25 39 50/5" 14 50/5"	-							-	Very	Der	nse	
	50/5"	2	Gray fine SAND, lit	tle Silt. drv. mica	ceous	0			145	1			

Boring/Well ID:

DAA-37sb

Page 2 of 2

Project:		Green Ri	dge Recycling	Boring/Well A	rea:	East Area	3		Drilling Rig	у Туре	: 1	Γrack Rig CME 45
Project #	# :	18020117	7-030201	Logged By:	D.	Coakley			Drilling Me	thod:	3.2	25" Hollow Stem Auger
ocation	:	Cumberla	and County, VA	Northing:	37	29474.02			Sampling I	Metho	d: §	Split Spoon
Start Dat	te:	0	4/04/19	Easting:	11:	594007.15			Well Mater	rial:	NA	
Complet	ion Date	e: 0	4/04/19	Ground Eleva	ation:	357.48			Screen Siz	ze:	NA	
Contract			ge Drilling	Total Depth:		47.5'			Filter Pack	ς:	NA	
Driller:		James Jo		TOC Elevatio	n:	NA			Seal:	Bente	onite	Pellets/Hydrated
N Value	Plow	Denth		scription (USCS			Geol	Well				Remarks
>50	-	Gray fine SAND, littl SAPROLITE (SM)	e Silt, dry, mica	ceous	5,			_ _ _ _ _ 317.48	Very Very			
	45 50/2"	- - -45 -	Auge	er Refusal at 47	7.5'	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- - -312.48 -	Very	Dens	е
		- -50 - -							- -307.48 - -			
		- 55 - -							- 302.48 - -			
		- -60 -							- = 297.48 -			
		_ _ _65							- - - 292.48			
		-							-			

Boring/Well ID:

DAA-38sb

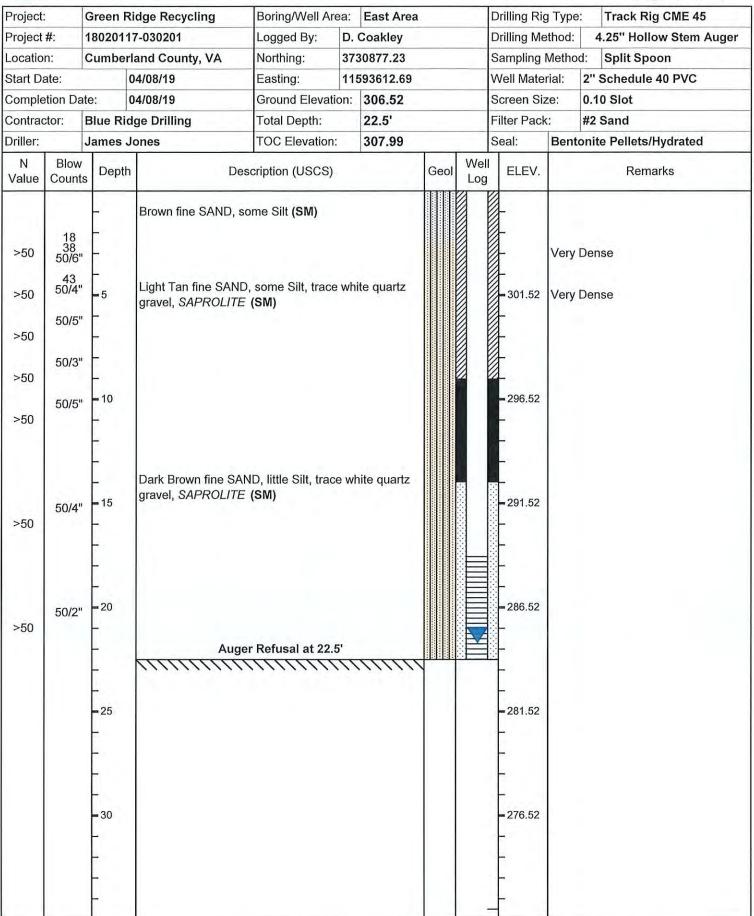
Project:		Green I	Rid	lge Recycling	Boring/Well A	rea:	East Area	Ų.		Drilling Rig	у Туре		Track Rig CME 45
roject	#:	180201	17-	-030201	Logged By:	D.	Coakley			Drilling Me	thod:		3.25" Hollow Stem Auger
.ocatio	n:	Cumbe	rla	nd County, VA	Northing:	37	34294.95			Sampling I	Metho	d:	Split Spoon
Start Da	ate:		04	/04/19	Easting:	11	594503.05			Well Mater	rial:	NA	1
Comple	tion Da	ite:	04	/04/19	Ground Eleva	tion:	307.43			Screen Siz	ze:	NA	
Contrac	ctor:	Blue Ri	dg	e Drilling	Total Depth:		19.5'			Filter Pack	:	NA	
Oriller:		James	Joi	nes	TOC Elevation	n:	NA			Seal:	Bent	oni	te Pellets/Hydrated
N Value	Blow Count		h	De	scription (USCS)		Geol	Well Log				Remarks
		-	ı	Red SILT and Clay ((ML)					-			
9	3369			7, 7,							Loose	Э	
8	6 -	ı	Red SILT and fine S	and, micaceous	s (SM)			- 302.43	Loose	Э		
6	33355	-								-	Loose	Э	
15	5 10 11 5	- - 10								- - 297.43	Mediu	ım	Dense
13	67 8 5	-		ے کے کہاری کی	AND TEM					-			Dense
18	11 9 Shelby			Very light Tan fine S (SM)	AND and Silt, m	nicace	eous, dry,			- - - 292.43	Mediu	ım.	Dense
12	7 5 7 10 6 50/6"									-	Medio	um	Dense
>50	10 6 50/6"	-		Auge	er Refusal at 19).5'					Very	Der	nse
		- 20 -		(///////////	////////	///	(//////			= 287.43 -			
		25								- 282.43			
										-			
		- -30								- - 277.43			
		-								Ē			
										-			

Boring/Well ID:

DAA-39sb

roject				Boring/Well A	rea:	East Area			Drilling Rig	д Туре		Track Rig CME 45
Project	#:	1802011	7-030201	Logged By:	D.	Coakley			Drilling Me	thod:		3.25" Hollow Stem Auger
ocatio	n:	Cumberl	and County, VA	Northing:	373	33886.43			Sampling I	Method	d:	Split Spoon
Start Da	ate:	0	14/04/19	Easting:	11	94325.67			Well Mate	rial:	NA	
Comple	tion Da	ite: 0	4/04/19	Ground Eleva	tion:	315.21			Screen Siz	ze:	NA	
Contrac	ctor:	Blue Rid	ge Drilling	Total Depth:		25.5'			Filter Pack	c :	NA	
Oriller:		James J	ones	TOC Elevatio	n:	NA			Seal:	Bento	onit	e Pellets/Hydrated
N Value	Blow Counts		De	scription (USCS	5)		Geol	Well Log	ELEV.			Remarks
>50 >50	50/4" 50/4"	-	Tan very fine SAND	and Silt, <i>SAPR</i>	OLITE	: (SM)			- - - - - 310.21	Very I		
>50	50/3"								-	Very I	Der	se
>50	11 17 50/5"									Very I	Der	ise
43	14 21 22 23	- 10	Tan fine SAND, little		tzite ç	ıravel			- 305.21	Dense	е	
69	35 34 30 10	-	lenses, SAPROLITE	(SM)					-	Very I	Der	ase
31	14 21 22 23 15 35 34 30 13 18 27 24 31 50/5"	= 15 -							- 300.21	Dense		
>50	50/5" 19 21 22	-							-	Very I		se
43	22 22 17	- 20		AND PUL OU		ADDOLITE			- - 295.21	Dense		
56	22 17 23 33 39 18 31 38 50/5" 27 50/3"		Brown to gray fine S (SM)	SAND, little Silt, o	ary, S	APROLITE,				Very I		
69	38 50/5" 27								-	Very I		
>50	50/3"	- 25	Aug	er Refusal at 25	5.5'	//////			- 290.21	Very I	Den	se
		- - - 30 -							- - - 285.21			

Boring/Well ID:


DAA-40pz

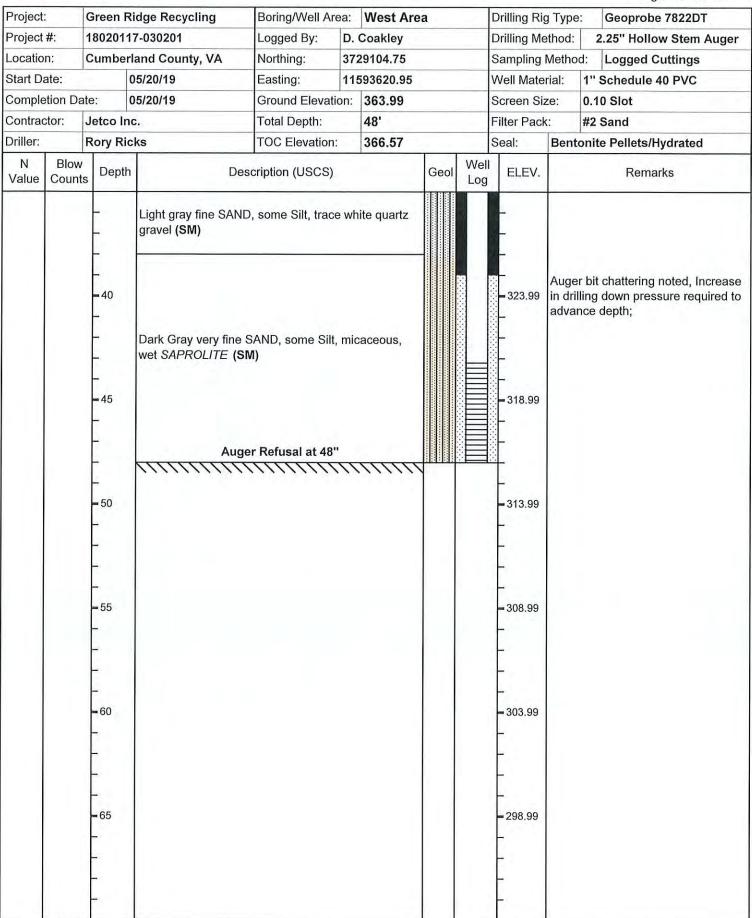
Project	:	Green F	Ridge Recycling	Boring/Well A	rea:	East Area			Drilling Rig	у Тур	e: Track Rig CME 45
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	4.25" Hollow Stem Auger
Locatio	n:	Cumbe	rland County, VA	Northing:	37	32549.57			Sampling I	Metho	od: Split Spoon
Start D	ate:		04/05/19	Easting:	11	594305.23			Well Mater	rial:	2" Schedule 40 PVC
Comple	etion Da	ate:	04/05/19	Ground Elevat	tion:	325.93			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Blue Ri	dge Drilling	Total Depth:		29'			Filter Pack	::	#2 Sand
Driller:		James	Jones	TOC Elevation	ր:	327.50			Seal:	Ben	tonite Pellets/Hydrated
N Value	Blow		n De	escription (USCS))		Geol	Well	ELEV.		Remarks
		- 5 - 5 10 - 15 		e Sand, little Clay some Silt (SM)	eous				- 320.93 - 315.93 - 310.93 - 305.93 - 300.93	not c	E: Pouring rain, split spoons collected due to safety concerns ged Cuttings and collected grab ples

Boring/Well ID:

DAA-41pz

Boring/Well ID:

DAA-42pz


Project:		Green I	Ridge Recycling	Boring/Well A	rea:	West Are	a		Drilling Rig	д Туре	e: Geoprobe 7822DT
Project :	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	ethod:	2.25" Hollow Stem Auger
Location	n:	Cumbe	rland County, VA	Northing:	37	29104.75			Sampling	Metho	od: Logged Cuttings
Start Da	ite:		05/20/19	Easting:	11	593620.95			Well Mate	rial:	1" Schedule 40 PVC
Comple	tion Da	ite:	05/20/19	Ground Elevat	tion:	363.99			Screen Siz	ze:	0.10 Slot
Contrac	tor:	Jetco Ir	ic.	Total Depth:		48'			Filter Pack	c :	#2 Sand
Driller:		Rory Ri	cks	TOC Elevation	n:	366.57			Seal:	Bent	tonite Pellets/Hydrated
N Value	Blow		n De	escription (USCS))		Geol	Wel Log			Remarks
		- 5 - 10 - 15 - 20 - 25 - 30 - 30	Red SILT, some CI Red to brown SILT, Light gray fine SAN gravel (SM)	little fine Sand, t	race	gravel (SM)			-358.99 -353.99 -348.99 -3343.99 -3333.99	groui refus	ezometer installed for additional ndwater and bedrock (auger sal) control data; drill cuttings ed; no samples collected

Boring/Well ID:

DAA-42pz

Page 2 of 2

Boring/Well ID:

DAA-43pz

Project:		Green F	Ridge Recycling	Boring/Well Ar	ea:	West Are	a	Drilling Rig	у Туре):	Geoprobe 7822DT
Project #	# :	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	thod:	2	.25" Hollow Stem Auger
ocation	1:	Cumbe	rland County, VA	Northing:	37	32375.27		Sampling I	Metho	d:	Logged Cuttings
Start Da	te:		05/20/19	Easting:	11:	592068.47		Well Mater	rial:	1" 5	Schedule 40 PVC
Complet	tion Da	te:	05/20/19	Ground Elevati	ion:	309.00		Screen Siz	ze:	0.10) Slot
Contract	tor:	Jetco Ir	IC.	Total Depth:		15'		Filter Pack	:	#2 5	Sand
Oriller:		Rory Ri	cks	TOC Elevation	:	309.32		Seal:	Bent	onite	Pellets/Hydrated
N Value	Blow		n Des	cription (USCS)			Geol Wel				Remarks
		- 5 - 10 - 15 - 20 - 25 - 30		e SAND, some S	ilt, m	nicaceous,		- 304.00 - 304.00 - 299.00 - 294.00 - 284.00 - 284.00 - 279.00	grour refusa logge Auge in dril	ndwa al) co ed; no r bit o	neter installed for additionater and bedrock (auger ontrol data; drill cuttings o samples collected

Boring/Well ID:

DAA-44pz

Project:		Green I	Ridge Recycling	Boring/Well /	Area:	West Are	a		Drilling Rig	у Туре:	Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	2.25" Hollow Stem Auger
Locatio	n:	Cumbe	rland County, VA	Northing:	37	27203.10			Sampling I	Method	d: Logged Cuttings
Start Da	ate:		05/20/19	Easting:	11	593948.53			Well Mater	rial:	1" Schedule 40 PVC
Comple	tion Da	ate:	05/20/19	Ground Eleva	ation:	379.96			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Jetco Ir	ıc.	Total Depth:		45'			Filter Pack	: 1	#2 Sand
Driller:		Rory Ri	cks	TOC Elevation	on:	382.98			Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count		n D	escription (USCS	S)		Geol	Well Log			Remarks
			Red to brown SILT micaceous (ML)	and Clay, trace	fine S	and,					
		- 5	Red SILT, trace wh	nite quartz grave	I, (SM)			374.96		
		- - -10	Dark brown SILT, t	race fine Sand, ı	micac	eous, (SM)			369.96		
		-	Light Gray SILT, tra	oco quartz gravo	d mice	accours.				groun refusa	zometer installed for additional dwater and bedrock (auger al) control data; drill cuttings d; no samples collected
		- 15 - -	(SM)	ace qualiz glave	i, IIIIO	aceous,			- 364.96	logge	a, no sumples conceted
		- - 20 -							359.96		
		- - - 25							354.96		
			Owner CAND	owa 6''' kana	LV-	•				in drill	bit chattering noted, Increase ing down pressure required to ce depth;
		- 30 - -	Gray fine SAND, so micaceous, SAPRO		nite q	uartz gravel,			349.96 - -		

Boring/Well ID:

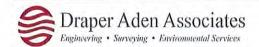
DAA-44pz

Page 2 of 2

Project:		Green F	Ridge Recycling	Boring/Well A	Area:	West Area	a		Drilling Rig T	ype:	Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Metho	od:	2.25" Hollow Stem Auger
Locatio	n:	Cumber	rland County, VA	Northing:	37	27203.10			Sampling Me	thod:	Logged Cuttings
Start Da	ate:		05/20/19	Easting:	11	593948.53			Well Material	: 1	" Schedule 40 PVC
Comple	tion Da	ate:	05/20/19	Ground Eleva	ation:	379.96			Screen Size:	0	.10 Slot
Contrac	ctor:	Jetco Ir	ıc.	Total Depth:		45'			Filter Pack:	#	2 Sand
Driller:		Rory Ri	cks	TOC Elevation	n:	382.98			Seal: Be	entor	nite Pellets/Hydrated
N Value	Blow		n De	scription (USCS	S)		Geol	Well			Remarks
		-40 -40 -45 -50 -55 -60 -65			5"				- 334.96 - 334.96 - 329.96 		

Boring/Well ID:

DAA-45pz


Project:		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Drilling Rig	ј Туре	•	Geoprobe 7822DT
roject	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	thod:	2	2.25" Hollow Stem Auger
.ocatio	n:	Cumbe	rland County, VA	Northing:	37	31594.25		Sampling I	Metho	d:	Logged Cuttings
Start Da	ate:		05/20/19	Easting:		590676.39		Well Mater		_	Schedule 40 PVC
	etion Da		05/20/19	Ground Eleva		269.06		Screen Siz		-	0 Slot
Contrac	ctor:	Jetco Ir	ıc.	Total Depth:		8'		Filter Pack	:	#2	Sand
Oriller:		Rory Ri	cks	TOC Elevation	n:	271.24		Seal:			e Pellets/Hydrated
N Value	Blow Count		n Des	scription (USCS)		Geol We				Remarks
		5 10	Red SILT, some Cla		Silt, n			= 264.06 = 259.06 = 254.06 = 249.06 = 244.06 = 239.06 = 239.06	groun refusa	ndwa al) c	neter installed for addition ater and bedrock (auger ontrol data; drill cuttings o samples collected

Boring/Well ID:

DAA-46pz

Project:		Green F	Ridge Recycling	Boring/Well A	\rea:	West Ar	ea		Drilling Rig	у Тур	e: Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley			Drilling Me	thod:	2.25" Hollow Stem Auger
Locatio	n:	Cumber	rland County, VA	Northing:	37	27762.31			Sampling I	Metho	od: Logged Cuttings
Start Da	ate:		05/20/19	Easting:	11	593398.57			Well Mater	rial:	1" Schedule 40 PVC
Comple	tion Da	ate:	05/20/19	Ground Eleva	ation:	360.77			Screen Siz	ze:	0.10 Slot
Contrac	ctor:	Jetco In	ic.	Total Depth:		35'			Filter Pack	:	#2 Sand
Driller:		Rory Ri	cks	TOC Elevatio	n:	364.16			Seal:	Ben	tonite Pellets/Hydrated
N Value	Blow Count		De	escription (USCS	S)		Geol	Wel Log			Remarks
		-	Red SILT, some CI	ay, trace fine Sa	nd (N	IL)			-		
		- - - - - - - - - - - - - - - - - - -	Red to brown SILT micaceous, (SM) Brown fine SAND, s gravel, micaceous,	some Silt, trace v					355.77 -355.77 -350.77 -345.77	grou refus	ezometer installed for additional ndwater and bedrock (auger sal) control data; drill cuttings ed; no samples collected
		- -20 - - - - - -	Light Gray SILT and	d fine Sand, mica	aceou	ıs, (SM)			-340.77 -335.77		
		- - -30	Dark Gray very fine (SM)	SAND, little Silt,	, mica	ceous,			_ _ _ _ 330.77 _ _		
			Aug	ger Refusal at 3	5'						

Boring/Well ID:

DAA-47pz

Project		Green F	Ridge Recycling	Boring/Well A	rea:	West Are	a	Dril	lling Rig	Туре:		Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Dril	lling Met	hod:	2	.25" Hollow Stem Auger
Locatio	n:	Cumber	rland County, VA	Northing:	37	26637.56		Sar	mpling N	1ethod	d:	Logged Cuttings
Start D	ate:		05/21/19	Easting:	11	592845.76		We	ell Materi	al:	1" 5	Schedule 40 PVC
Comple	etion Da	ite:	05/21/19	Ground Eleva	tion:	359.19		Scr	een Size	е:	0.10) Slot
Contrac	ctor:	Jetco Ir	ıc.	Total Depth:		54'		Filte	er Pack:		#2 \$	Sand
Driller:		Rory Ri	cks	TOC Elevation	n:	360.91		Sea	al:	Bento	onite	Pellets/Hydrated
N Value	Blow Count	I I I DONT	De De	scription (USCS	5)			ell og	ELEV.			Remarks
		-10 -15 -15 -20 -25 -30	Red to brown SILT, Red to brown SILT, Very light Tan to wh Light brown very fine (SM) Light gray fine SANE gravel (SM)	little fine Sand, t	trace	gravel (SM) ilt (SM)			9	groun refusa	dwa al) co	neter installed for additional ter and bedrock (auger ontrol data; drill cuttings o samples collected

Boring/Well ID:

DAA-47pz

Page 2 of 2

Project		Green F	Ridge Recycling	Boring/Well A	\rea:	West Are	а	Drilling Rig	Туре:	Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley		Drilling Me	thod:	2.25" Hollow Stem Auger
Locatio	n:	Cumber	rland County, VA	Northing:	37	26637.56		Sampling I	Method	d: Logged Cuttings
Start D	ate:		05/21/19	Easting:	11	592845.76		Well Mater	rial:	1" Schedule 40 PVC
Comple	etion Da	ate:	05/21/19	Ground Eleva	ation:	359.19		Screen Siz	e:	0.10 Slot
Contrac	ctor:	Jetco Ir	ıc.	Total Depth:		54'		Filter Pack	:	#2 Sand
Driller:		Rory Ri	cks	TOC Elevatio	n:	360.91		Seal:	Bento	onite Pellets/Hydrated
N Value	Blow Count		n De	escription (USCS	S)		Geol We			Remarks
		-40 -45 -50 -55 -60 -65	Gray very fine SAN SAPROLITE (SM) Dark Gray very fine SAPROLITE (SM) Aug		, mica			-314.19 -314.19 -309.19 -304.19 -299.19 -299.19 -299.19	in drill	bit chattering noted, Increase ing down pressure required to ice depth;

Boring/Well ID:

DAA-48pz

Project:		Green F	Ridge Recycling	Boring/Well Ar	ea:	West Are	a		Drilling Rig	Type		Geoprobe 7822DT
Project	#:	180201	17-030201	Logged By:	D.	Coakley		E	Orilling Me	thod:	:	2.25" Hollow Stem Auger
Locatio	n:	Cumbe	rland County, VA	Northing:	3730575.48			5	Sampling I	Method: Logged Cuttings		Logged Cuttings from 0-6
Start Da	ate:		05/21/19	Easting:	ting: 11589971.32		V	Well Mater	rial:	1"	Schedule 40 PVC	
Comple	tion Da	ate:	05/21/19	Ground Elevat	ion:	315.50		5	Screen Siz	ze:	0.1	0 Slot
Contrac	tor:	Jetco Ir	ıc.	Total Depth:		18'		F	ilter Pack		#2	Sand
Driller:		Rory Ri	cks	TOC Elevation: 317.84				5	Seal:	Bento	onit	te Pellets/Hydrated
N Value	Blow Count		n Des			Geol We		ELEV.			Remarks	
		- 5 - 10 - 15 - 20 - 25 - 30 	Very light Tan fine S gravel lenses, SAPS	AND, trace Silt, v	white				310.50 - 310.50 - 305.50 - 305.50 - 295.50 - 295.50 - 285.50	groun refusa logge logge	dwa al) c d; n	meter installed for additional ater and bedrock (auger control data; drill cuttings no samples collected

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

Prepared by. CBW Date. 0/11/2019								
Sample Data								
<u>Sample ID</u>	DAA-01	DAA-02	DAA-02	DAA-02	DAA-03	DAA-03	DAA-03	DAA-03
Sample Depth	6'-8'	16'-18'	24'-26'	38'-40'	6'-8'	10'-12'	20'-22'	28'-30'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Visual Description	Brown	Brownish-	Gray	Light	Light	Brown	Brownish-	Light
		Gray		Yellowish-	Brownish-		Gray	Brownish-
				Brown	Gray			Gray
Classification Data								
Natural Moisture Content, %	19.9%	21.4%	9.0%	7.3%	42.4%	45.7%	49.4%	53.3%
<u>Liquid Limit</u>	Np	53	Np	Np	63	65	69	73
<u>Plastic Limit</u>	Np	45	Np	Np	48	44	44	41
<u>Plastic Index</u>	Np	8	Np	Np	15	21	25	32
Passing No. 200 Sieve, %	23.7%	20.7%	18.8%	16.9%	77.3%	79.6%	85.6%	78.0%
<u>USCS Group Symbol</u>	SM	SM	SM	SM	MH	MH	MH	MH
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Elastic SILT	Elastic SILT	Elastic SILT	Elastic SILT
					with Sand	with Sand		with Sand
Standard Proctor Data								
Maximum Dry Density, pcf	-	-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf	-	-	-	-		-		
Percent Compaction, %	-	-	-	-	-	-	-	-
Compacted Moisture Content, %	-	-	-	-	-	-	-	-
Deviation from Optimum	-	-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

Trepared by: CDVV Bate: 0/11/2019								
Sample Data								
Sample ID		DAA-03	DAA-04	DAA-04	DAA-04	DAA-04	DAA-04	DAA-04
Sample Depth	45'-47	55'-57'	10'-12'	12'-14'	18'-20'	24'-26'	28'-30'	36'-38'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Visual Description	Brownish-	Brown	Light	Light Red-	Brown	Light Gray	Brown	Brown
	Gray		Brownish-	Brown				
			Gray					
Classification Data								
Natural Moisture Content, %	51.3%	43.3%	44.1%	32.8%	49.8%	36.3%	33.3%	26.2%
<u>Liquid Limit</u>	56	63	44	Np	52	Np	41	Np
<u>Plastic Limit</u>	34	35	33	Np	42	Np	34	Np
<u>Plastic Index</u>	22	28	11	Np	10	Np	7	Np
Passing No. 200 Sieve, %	74.4%	69.9%	42.6%	33.6%	45.3%	31.1%	37.6%	30.6%
<u>USCS Group Symbol</u>		МН	SM	SM	SM	SM	SM	SM
<u>USCS Group Name</u>	Elastic SILT	Sandy Elastic	Silty SAND					
	with Sand	SILT						
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf		-	-	-	-	-	-	-
Percent Compaction, %		-	-	-	-	-	-	-
Compacted Moisture Content, %		-	-	-	-	-	-	-
<u>Deviation from Optimum</u>		-	-	-	-	-	-	-
Permeability, cm/sec	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

Prepared by. CBW Date. 0/11/2019								
Sample Data								
<u>Sample ID</u>	DAA-05	DAA-05	DAA-06	DAA-07	DAA-07	DAA-07	DAA-08	DAA-08
<u>Sample Depth</u>	7'-9'	15'-17'	12'-14'	10'-12'	14'-16'	55'-57'	6'-8'	10'-11.5'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Shelby-Tube
<u>Visual Description</u>	Light	Light Red-	Light Brown	Brownish-	Brownish-	Dark Red-	Reddish-	Gray
	Brownish-	Brown		Gray	Gray	Brown	Brown	
	Gray							
Classification Data								
Natural Moisture Content, %	7.1%	7.4%	4.8%	29.1%	24.4%	52.3%	32.7%	41.6%
<u>Liquid Limit</u>	Np	Np	Np	56	40	59	53	Np
<u>Plastic Limit</u>	Np	Np	Np	34	28	44	48	Np
<u>Plastic Index</u>	Np	Np	Np	22	12	15	5	Np
Passing No. 200 Sieve, %	16.6%	18.4%	17.1%	31.1%	25.9%	54.7%	39.8%	27.9%
<u>USCS Group Symbol</u>	SM	SM	SM	SM	SM	SM	SM	SM
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Sandy Elastic	Silty SAND	Silty SAND
						SILT		
Standard Proctor Data								
Maximum Dry Density, pcf	-	_	_	_	_	_	_	_
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf	-	-	-	_	-	-	-	-
Percent Compaction, %	-	-	-	-	-	-	-	-
Compacted Moisture Content, %	-	-	-	-	-	-	-	-
<u>Deviation from Optimum</u>	-	-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-				-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

' '								
Sample Data								
Sample ID	DAA-08	DAA-08	DAA-09	DAA-09	DAA-10	DAA-10	DAA-12	DAA-13
Sample Depth	12'-14'	20'-22'	6'-8'	20'-22'	22'-24'	24'-26'	25'-27'	8'-10'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Visual Description	Brown	Brownish-	Light Brown	Brownish-	Brownish-	Gray	Gray	Light Brown
		Gray		Gray	Gray			
Classification Data								
Natural Moisture Content, %	43.8%	28.0%	31.3%	12.4%	11.8%	11.6%	3.7%	21.1%
<u>Liquid Limit</u>	43	Np	57	Np	36	Np	Np	39
<u>Plastic Limit</u>	36	Np	44	Np	28	Np	Np	29
<u>Plastic Index</u>	7	Np	13	Np	8	Np	Np	10
Passing No. 200 Sieve, %	26.4%	22.9%	42.3%	16.4%	17.8%	29.5%	18.2%	30.6%
<u>USCS Group Symbol</u>	SM	SM	SM	SM	SM	SM	SM	SM
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	1	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf	-	-	-	-	-	-	-	-
Percent Compaction, %	-	-	-	-	-	-	-	-
Compacted Moisture Content, %	-	-	-	-	-	-	-	-
<u>Deviation from Optimum</u>	-	-	-	-	-	-	-	-
Permeability, cm/sec	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

Sample Data								
Sample ID	DAA-13	DAA-13	DAA-13	DAA-14	DAA-14	DAA-14	DAA-14	DAA-14
Sample Depth	14'-16'	26'-28'	28'-30'	6'-8'	10'-12'	14'-16'	24'-26'	26'-28'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
<u>Visual Description</u>	Brown	Brownish-	Light Brown	Reddish-	Reddish-	Reddish-	Reddish-	Light Brown
		Gray		Brown	Brown	Brown	Brown	
Classification Data								
Natural Moisture Content, %	12.6%	17.4%	15.1%	30.8%	36.7%	33.9%	38.4%	18.3%
<u>Liquid Limit</u>	34	Np	Np	66	72	66	55	Np
<u>Plastic Limit</u>	27	Np	Np	41	37	42	40	Np
<u>Plastic Index</u>	7	Np	Np	25	35	24	15	Np
Passing No. 200 Sieve, %	25.4%	17.5%	31.5%	54.4%	71.9%	51.5%	48.1%	26.4%
<u>USCS Group Symbol</u>	SM	SM	SM	МН	MH	MH	SM	SM
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Sandy Elastic	Elastic SILT	Sandy Elastic	Silty SAND	Silty SAND
				SILT	with Sand	SILT		
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf	-	-	-	-	-	-	-	-
Percent Compaction, %	-	-	-	-	-	-	-	-
Compacted Moisture Content, %	-	-	-	-	-	-	-	-
Deviation from Optimum	-	-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

DAA-14	DAA-17	DAA-17	DAA-18	DAA-19	DAA-20	DAA-21	DAA-22
30'-32'	6'-8'	10'-12'	6'-8'	6'-8'	14'-16'	6'-8'	6'-8'
Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Light Red-	Light Brown	Brownish-	Light Brown	Brownish-	Brownish-	Light Brown	Light Brown
Brown		Gray		Gray	Gray	'	
				,	,		
13.8%	9.1%	8.6%	27.3%	17.6%	11.4%	14.8%	19.4%
Np	Np	41	Np	41	Np	38	Np
Np	Np	26	Np	26	Np	27	Np
Np	Np	14	Np	15	Np	11	Np
25.0%	27.8%	25.6%	23.1%	22.4%	26.7%	25.1%	29.8%
SM	SM	SM	SM	SM	SM	SM	SM
Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
	30'-32' Jar Light Red- Brown 13.8% Np Np Np Np Silty SAND	30'-32' 6'-8' Jar Jar Light Red-Brown Light Brown 13.8% 9.1% Np Np Np Np Np Np SM SM SM Silty SAND Silty SAND - -	30'-32' 6'-8' 10'-12' Jar Jar Jar Light Red-Brown Light Brown Gray Brownish-Gray 13.8% 9.1% 8.6% Np Np 41 Np Np 26 Np Np 14 25.0% 27.8% 25.6% SM SM SM Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td< td=""><td>30'-32' 6'-8' 10'-12' 6'-8' Jar Jar Jar Jar Light Red-Brown Light Brown Brownish-Gray Light Brown 13.8% 9.1% 8.6% 27.3% Np Np 41 Np Np Np 26 Np Np Np 14 Np 25.0% 27.8% 25.6% 23.1% SM SM SM SM Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>30'-32' 6'-8' 10'-12' 6'-8' 6'-8' Jar Jar Jar Jar Jar Light Red-Brown Light Brown Brownish-Gray Brownish-Gray Brownish-Gray 13.8% 9.1% 8.6% 27.3% 17.6% Np Np 41 Np 41 Np Np 26 Np 26 Np Np 14 Np 15 25.0% 27.8% 25.6% 23.1% 22.4% SM SM SM SM SM Silty SAND Silty SAND Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<</td><td> 30'-32' 6'-8' 10'-12' 6'-8' 6'-8' 14'-16' Jar</td><td> 30'-32' 6'-8' 10'-12' 6'-8' 14'-16' 6'-8' 14' 14' 14' 14' 15' 14' 15' 14' 15'</td></td<>	30'-32' 6'-8' 10'-12' 6'-8' Jar Jar Jar Jar Light Red-Brown Light Brown Brownish-Gray Light Brown 13.8% 9.1% 8.6% 27.3% Np Np 41 Np Np Np 26 Np Np Np 14 Np 25.0% 27.8% 25.6% 23.1% SM SM SM SM Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	30'-32' 6'-8' 10'-12' 6'-8' 6'-8' Jar Jar Jar Jar Jar Light Red-Brown Light Brown Brownish-Gray Brownish-Gray Brownish-Gray 13.8% 9.1% 8.6% 27.3% 17.6% Np Np 41 Np 41 Np Np 26 Np 26 Np Np 14 Np 15 25.0% 27.8% 25.6% 23.1% 22.4% SM SM SM SM SM Silty SAND Silty SAND Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<	30'-32' 6'-8' 10'-12' 6'-8' 6'-8' 14'-16' Jar	30'-32' 6'-8' 10'-12' 6'-8' 14'-16' 6'-8' 14' 14' 14' 14' 15' 14' 15' 14' 15'

Green Ridge, Cumberland County Landfill

DAA# 18020117-030102

DAA-22	DAA-22	DAA-23	DAA-23	DAA-23	DAA-25	DAA-25	DAA-26
10'-12	35'-37'	14'-16'	26'-28'	28'-29.5'	6'-8'	16'-18'	2'-4'
Jar	Jar	Jar	Jar	Shelby-Tube	Jar	Jar	Jar
Brown	Brownish-	Reddish-	Brownish-	Gray	Light Brown	Light Brown	Light Red-
	Gray	Brown	Gray				Brown
20.9%	8.1%	22.3%	16.7%	16.5%	39.4%	24.0%	41.5%
Np	Np	Np	Np	Np	61	62	79
Np	Np	Np	Np	Np	38	38	37
Np	Np	Np	Np	Np	23	24	42
13.5%	15.5%	30.0%	16.0%	18.9%	40.3%	31.9%	93.8%
SM	SM	SM	SM	SM	SM	SM	MH
Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Elastic SILT
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
	10'-12 Jar Brown 20.9% Np Np Np SM Silty SAND	10'-12 35'-37' Jar Brownish-Gray 20.9% 8.1% Np Np Np Np Np Np 13.5% 15.5% SM SM Silty SAND Silty SAND	10'-12 35'-37' 14'-16' Jar Brown Reddish-Brown 20.9% 8.1% 22.3% Np Np Np Np Np Np Np Np Np 13.5% 15.5% 30.0% SM SM SM Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	10'-12 35'-37' 14'-16' 26'-28' Jar Jar Jar Brown Brownish-Gray Brownish-Gray 20.9% 8.1% 22.3% 16.7% Np Np Np Np Np Np Np Np Np Np Np Np 13.5% 15.5% 30.0% 16.0% SM SM SM SM Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	10'-12 35'-37' 14'-16' 26'-28' 28'-29.5' Jar Jar Jar Shelby-Tube Brown Brownish-Gray Brownish-Gray Gray 20.9% 8.1% 22.3% 16.7% 16.5% Np Np Np Np Np Np Np Np Np Np Np Np Np Np Np 13.5% 15.5% 30.0% 16.0% 18.9% SM SM SM SM SM Silty SAND Silty SAND Silty SAND Silty SAND - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	10'-12	10'-12 35'-37' 14'-16' 26'-28' 28'-29.5' 6'-8' 16'-18' Jar J

Green Ridge, Cumberland County Landfill

DAA# 18020117-030102

Sample Data								
Sample ID	DAA-26	DAA-26	DAA-26	DAA-26	DAA-26	DAA-26	DAA-26	DAA-26
<u>Sample Depth</u>	4'-6'	8'-10'	18'-20'	20'-22'	22'-24'	24'-26'	28'-30'	34'-36'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Visual Description	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown
Classification Data								
Natural Moisture Content, %	36.3%	36.1%	46.0%	58.8%	59.4%	60.2%	52.0%	26.3%
<u>Liquid Limit</u>	61	Np	64	67	62	69	51	54
<u>Plastic Limit</u>	38	Np	52	55	46	53	37	42
<u>Plastic Index</u>	23	Np	12	12	16	16	14	12
Passing No. 200 Sieve, %	86.8%	79.7%	70.3%	88.3%	80.9%	87.3%	61.8%	32.0%
<u>USCS Group Symbol</u>		ML	МН	МН	МН	МН	МН	SM
<u>USCS Group Name</u>	Elastic SILT	SILT with	Elastic SILT	Elastic SILT	Elastic SILT	Elastic SILT	Sandy Elastic	Silty SAND
		Sand	with Sand		with Sand		SILT	
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf		-	-	-	-	-	-	-
Percent Compaction, %		-	-	-	-	-	-	-
Compacted Moisture Content, %		-	-	-	-	-	-	-
<u>Deviation from Optimum</u>		-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge, Cumberland County Landfill

DAA# 18020117-030102

•								
Sample Data								
Sample ID	DAA-27	DAA-27	DAA-27	DAA-28	DAA-28	DAA-28	DAA-28	DAA-28
Sample Depth	2'-4'	14'-16'	16'-18'	2'-4'	4'-6'	10'-12'	28'-30'	34'-36'
<u>Sample Type</u>		Jar	Jar	Jar	Jar	Jar	Jar	Jar
<u>Visual Description</u>	Light Brown	Light	Light Gray	Dark Brown	Light Red-	Light Brown	Brownish-	Brown
		Brownish-			Brown		Gray	
		Gray						
Classification Data								
Natural Moisture Content, %	7.4%	12.2%	7.5%	24.7%	21.5%	16.1%	9.3%	18.5%
<u>Liquid Limit</u>	Np	Np	Np	38	52	39	Np	Np
<u>Plastic Limit</u>	Np	Np	Np	22	29	29	Np	Np
<u>Plastic Index</u>	Np	Np	Np	16	23	10	Np	Np
Passing No. 200 Sieve, %	23.2%	35.4%	25.9%	42.7%	33.4%	30.4%	19.1%	22.1%
<u>USCS Group Symbol</u>		SM	SM	SC	SM	SM	SM	SM
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Clayey SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf		-	-	-	-	-	-	-
Percent Compaction, %		-	-	-	-	-	-	-
Compacted Moisture Content, %		-	-	-	-	-	-	
<u>Deviation from Optimum</u>		-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

Sample Data								
Sample ID	DAA-29	DAA-29	DAA-29	DAA-29	DAA-33	DAA-33	DAA-33	DAA-33
Sample Depth	2'-4'	6'-8'	12'-14'	24'-26'	2'-4'	4'-6'	6'-8'	8'-10'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
Visual Description	Light Brown	Brown	Brown	Reddish-	Red	Light Red-	Light Brown	Light Gray
				Brown		Brown		
Classification Data								
Natural Moisture Content, %	19.4%	30.8%	36.6%	30.0%	27.7%	27.3%	21.9%	13.0%
<u>Liquid Limit</u>	48	63	53	51	64	60	Np	32
<u>Plastic Limit</u>	24	34	41	35	38	33	Np	21
<u>Plastic Index</u>	24	29	12	16	26	27	Np	11
Passing No. 200 Sieve, %	28.8%	23.0%	23.8%	37.4%	36.0%	29.2%	20.2%	40.9%
<u>USCS Group Symbol</u>		SM	SM	SM	SM	SM	SM	SC
<u>USCS Group Name</u>	Clayey SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Clayey SAND
		with Gravel						
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf		-	-	-	-	-	-	-
Percent Compaction, %		-	-	-	-	-	-	-
Compacted Moisture Content, %		-	-	-	-	-	-	-
<u>Deviation from Optimum</u>		-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge, Cumberland County Landfill DAA# 18020117-030102

Sample Data								
Sample ID	DAA-33	DAA-33	DAA-34	DAA-34	DAA-34	DAA-35	DAA-35	DAA-35
<u>Sample Depth</u>	10'-12'	12'-14'	2'-4'	6'-8'	20'-22'	2'-4'	4'-6'	6'-8'
Sample Type	Jar	Jar	Jar	Jar	Jar	Jar	Jar	Jar
<u>Visual Description</u>	Light Gray	Light Red-	Reddish-	Light Brown	Light Brown	Red	Red	Reddish-
		Brown	Brown					Brown
Classification Data								
Natural Moisture Content, %	12.7%	8.5%	26.8%	10.1%	19.2%	20.9%	39.2%	30.1%
<u>Liquid Limit</u>	35	Np	65	35	Np	46	65	50
<u>Plastic Limit</u>	18	Np	20	19	Np	23	30	39
<u>Plastic Index</u>	17	Np	45	16	Np	23	35	11
Passing No. 200 Sieve, %	31.7%	20.5%	49.0%	17.4%	28.9%	57.7%	41.4%	39.4%
<u>USCS Group Symbol</u>		SM	SC	SC	SM	CL	SC	SM
<u>USCS Group Name</u>	Clayey SAND	Silty SAND	Clayey SAND	Clayey SAND	Silty SAND	Sandy Lean	Clayey SAND	Silty SAND
						CLAY		
Standard Proctor Data								
Maximum Dry Density, pcf		-	-	-	-	-	-	-
Optimum Moisture Content, %	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf		-	-	-	-	-	-	-
Percent Compaction, %		-	-	-	-	-	-	-
Compacted Moisture Content, %		-	-	-	-	-	-	-
<u>Deviation from Optimum</u>		-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge,

Cumberland County Landfill DAA# 18020117-030102

'								
Sample Data								
Sample ID	DAA-36	DAA-36	DAA-36	DAA-36	DAA-37	DAA-40	DAA-40	DAA-40
Sample Depth	4'-6'	6'-8'	22'-24'	35'-37'	4'-6'	5'	10'	15'
<u>Sample Type</u>	Jar	Jar	Jar	Jar	Jar	Cuttings	Cuttings	Cuttings
Visual Description	Reddish-	Light Brown	Light Brown	Light Red-	Red	Reddish-	Reddish-	Brown
	Brown			Brown		Brown	Brown	
Classification Data								
Natural Moisture Content, %	35.4%	38.3%	31.9%	24.1%	25.8%	28.4%	19.9%	24.9%
<u>Liquid Limit</u>	69	54	43	41	52	54	42	63
<u>Plastic Limit</u>	52	34	29	30	33	35	32	34
<u>Plastic Index</u>	17	20	14	11	19	19	10	29
Passing No. 200 Sieve, %	40.7%	48.3%	27.2%	31.7%	46.0%	50.4%	40.9%	44.8%
USCS Group Symbol	SM	SM	SM	SM	SM	MH	SM	SM
<u>USCS Group Name</u>	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Silty SAND	Sandy Elastic	Silty SAND	Silty SAND
						SILT		
Standard Proctor Data								
Maximum Dry Density, pcf	-	-	-	-	-	-	-	-
<u>Optimum Moisture Content, %</u>	-	-	-	-	-	-	-	-
Permeability Data								
Compacted Dry Density, pcf	-	-	-	-	-	-	-	-
Percent Compaction, %	-	-	-	-	-	-	-	-
Compacted Moisture Content, %	-	-	-	-	-	-	-	-
Deviation from Optimum	-	-	-	-	-	-	-	-
<u>Permeability, cm/sec</u>	-	-	-	-	-	-	-	-

Green Ridge, Cumberland County Landfill

DAA# 18020117-030102

Prepared By: CBW Date: 6/11/2019

Deviation from Optimum

Permeability, cm/sec

Prepared By: CBW Date: 6/11/2019							
Sample Data							
<u>Sample ID</u>	DAA-40	East	East	West	West		
<u>Sample Depth</u>	25'	0'-2.5'	2.5'-5.0'	0'-2.5'	2.5'-5.0'		
<u>Sample Type</u>	Cuttings	Bulk	Bulk	Bulk	Bulk		
<u>Visual Description</u>	Brown	Brown	Light Brown	Brown	Brown		
Classification Data							
Natural Moisture Content, %	11.9%	9.4%	5.9%	18.4%	17.0%		
<u>Liquid Limit</u>	Np	33	34	55	54		
<u>Plastic Limit</u>	Np	20	20	22	22		
<u>Plastic Index</u>	Np	13	14	33	32		
<u>Passing No. 200 Sieve, %</u>	35.9%	33.9%	30.1%	46.9%	58.4%		
							
<u>USCS Group Symbol</u>		SC	SC	SC	CH		
<u>USCS Group Name</u>	Silty SAND	Clayey SAND	Clayey SAND	Clayey SAND	Sandy Fat		
					CLAY		
Standard Proctor Data						 	
Maximum Dry Density, pcf	-	113.7	108.8	101.2	103.2		
Optimum Moisture Content, %	-	13.6%	16.7%	18.0%	20.1%		
Permeability Data							
Compacted Dry Density, pcf	-	110.6	105.8	98.1	99.5		
Percent Compaction, %		97.3%	97.2%	96.9%	96.4%		
Compacted Moisture Content, %	-	14.3%	17.5%	20.3%	21.3%		

0.8%

1.00E-07

2.3%

7.60E-08

1.2%

7.10E-08

0.7%

1.10E-07

Soil Classification Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-01

Sample Depth 6'-8'

Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

41

Pan Wt 194.41 grams

Pan + Soil (wet) 301.24 grams Pan + Soil (dry) 283.50 grams

Natural Moisture Content 19.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

262.40 grams (dry)

Percent Passing No. 200 Sieve 23.7%

Pan + Soil retained on No. 4 sieve

194.41 grams (dry)

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

Group Symbol SM Group Name Silty SAND

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

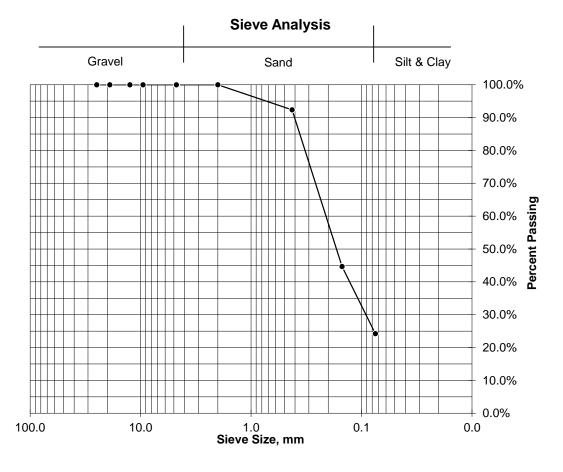
Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 4/15/2019

Grain Size Distribution Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-01 Sample Depth 6'-8'

Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	6.79	7.6%	0.425	92.4%
No. 100	42.51	47.7%	0.15	44.7%
No. 200	18.21	20.4%	0.075	24.2%
Pan	0.45	0.5%		
Total	67.96	76.3%		

Soil Classification Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Sample Received: 3/19/2019

Date Tested: 3/19/2019

Date Tested: 3/22/2019

Army Corps of Engineers Certified Laboratory

Sample ID DAA-02 Sample Depth 16'-18'

Visual Sample Description Micaceous Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 21

Pan Wt 193.80 grams Pan + Soil (wet) 296.90 grams

Pan + Soil (dry) 278.75 grams

Natural Moisture Content 21.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 261.20 grams

Percent Passing No. 200 Sieve 20.7%

Pan + Soil retained on No. 4 sieve

(dry) 193.80 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	22	34
Pan ID	97	103	104
Pan Wt	26.10	27.43	26.26
Pan + Soil (wet)	44.31	45.25	40.90
Pan + Soil (dry)	37.59	39.04	36.08
Moisture Content	58.5%	53.5%	49.1%
Liquid Limit	55	53	51

Plastic Limit

Pan ID	315	356
Pan Weight	9.14	9.09
Pan + Soil (wet)	21.79	23.44
Pan + Soil (dry)	17.89	19.00
Moisture Content	44.6%	44.8%

53

Plastic Limit 45
Plastic Index 8

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**

Grain Size Distribution Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

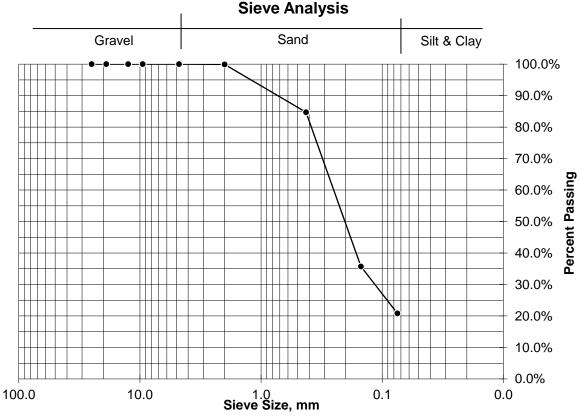
Prepared By: CBW

Sample ID DAA-02 Sample Depth 16'-18'

Sample Depth 16'-18'

Mechanical Sieve Analysis: ASTM D 422

Total


,					
	Sieve	Weight	Percent	Sieve	Percent
	Size	Retained	Retained	Size, mm	Passing
	1"	0.00	0.0%	25.0	100.0%
	3/4"	0.00	0.0%	19.0	100.0%
	1/2"	0.00	0.0%	12.5	100.0%
	3/8"	0.00	0.0%	9.50	100.0%
	No. 4	0.00	0.0%	4.75	100.0%
	No. 10	0.07	0.1%	2.00	99.9%

No. 40 12.92 15.2% 0.425 84.7% No. 100 41.59 49.0% 35.8% 0.15 No. 200 12.65 14.9% 0.075 20.9% Pan 0.16 0.2%

79.3%

0. . .

67.39

Soil Classification Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-02
Sample Depth 24'-26'

Visual Sample Description Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 124

Pan Wt 124.38 grams
Pan + Soil (wet) 229.97 grams
Pan + Soil (dry) 221.28 grams

Natural Moisture Content 9.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 203.04 grams

Percent Passing No. 200 Sieve 18.8%

Pan + Soil retained on No. 4 sieve

(dry) 124.38 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

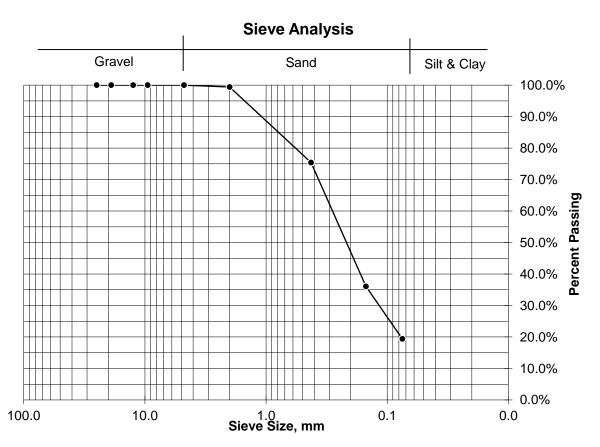
Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

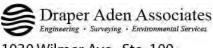
Grain Size Distribution Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-02 Sample Depth 24'-26'

Mechanical Sieve Analysis: ASTM D 422


Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.56	0.6%	2.00	99.4%
No. 40	23.25	24.0%	0.425	75.4%
No. 100	38.15	39.4%	0.15	36.1%
No. 200	16.14	16.7%	0.075	19.4%
Pan	0.54	0.6%		
Total	78.64	81.2%		

Soil Classification Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-02 Sample Depth 38'-40'

Visual Sample Description Light Yellowish-Brown Silty SAND

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 19

Pan Wt 188.60 grams Pan + Soil (wet) 289.46 grams Pan + Soil (dry) 282.64 grams

Natural Moisture Content 7.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 266.73 grams

Percent Passing No. 200 Sieve 16.9%

Pan + Soil retained on No. 4 sieve

(dry) 188.60 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

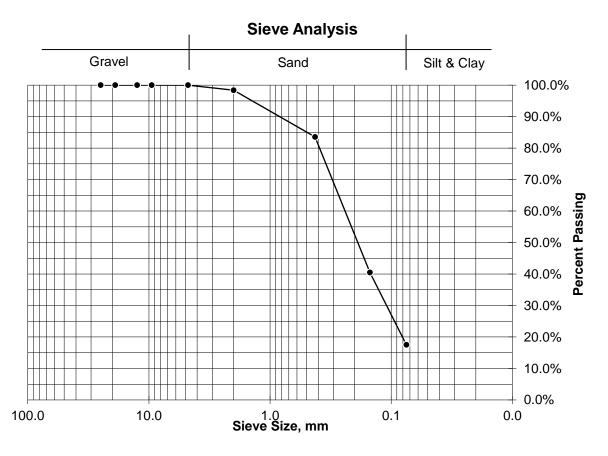
Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**

Grain Size Distribution Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-02 Sample Depth 38'-40'

Mechanical Sieve Analysis: ASTM D 422

,				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.53	1.6%	2.00	98.4%
No. 40	13.93	14.8%	0.425	83.6%
No. 100	40.48	43.0%	0.15	40.5%
No. 200	21.61	23.0%	0.075	17.5%
Pan	0.58	0.6%		
Total	78.13	83.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-03 Sample Depth 6'-8' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Visual Sample Description Light Brownish-Gray Elastic SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID 4

Pan Wt 194.44 grams

Pan + Soil (wet) 298.58 grams

Pan + Soil (dry) 267.58 grams

Natural Moisture Content 42.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 211.04 grams

Percent Passing No. 200 Sieve 77.3%

Pan + Soil retained on No. 4 sieve

(dry) 194.44 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	24	34
Pan ID	94	108	95
Pan Wt	23.78	33.07	24.41
Pan + Soil (wet)	37.72	50.20	42.96
Pan + Soil (dry)	32.02	43.53	36.08
Moisture Content	69.1%	63.8%	59.0%
Liquid Limit	65	63	61
Liquid Limit	63		

Plastic Limit

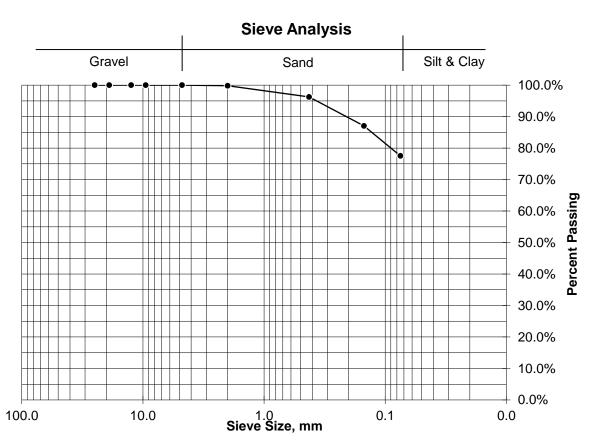
Pan ID	0	1138
Pan Weight	6.07	6.15
Pan + Soil (wet)	20.20	18.53
Pan + Soil (dry)	15.56	14.52
Moisture Content	48.9%	47.9%

Plastic Limit 48
Plastic Index 15

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-03 Sample Depth 6'-8'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.15	0.2%	2.00	99.8%
No. 40	2.57	3.5%	0.425	96.3%
No. 100	6.74	9.2%	0.15	87.1%
No. 200	6.97	9.5%	0.075	77.5%
Pan	0.15	0.2%		
Total	16.58	22.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Sample ID DAA-03 Sample Depth 10'-12'

Visual Sample Description Brown Elastic SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID 11

Pan Wt 187.42 grams

Pan + Soil (wet) 298.94 grams

Pan + Soil (dry) 263.95 grams

Natural Moisture Content 45.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 203.07 grams

Percent Passing No. 200 Sieve 79.6%

Pan + Soil retained on No. 4 sieve

(dry) 187.42 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	22	33
Pan ID	96	101	169
Pan Wt	24.80	23.95	27.10
Pan + Soil (wet)	43.27	42.52	46.41
Pan + Soil (dry)	35.71	35.12	39.08
Moisture Content	69.3%	66.2%	61.1%
Liquid Limit	67	65	63

Plastic Limit

Pan ID	318	78
Pan Weight	6.17	4.22
Pan + Soil (wet)	18.93	14.41
Pan + Soil (dry)	15.02	11.29
Moisture Content	44.2%	44.1%

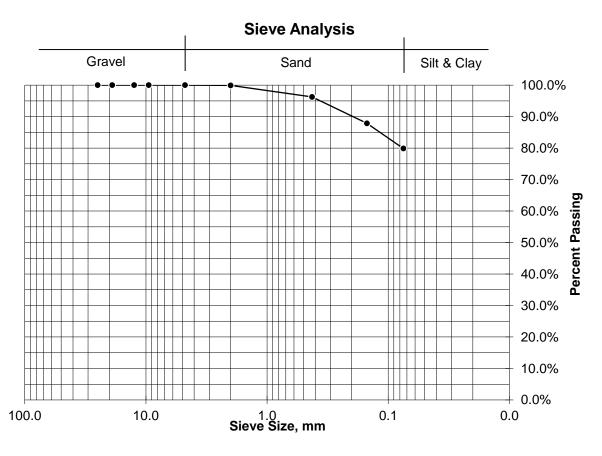
65

Plastic Limit 44
Plastic Index 21

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-03 Sample Depth 10'-12'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.06	0.1%	2.00	99.9%
No. 40	2.79	3.6%	0.425	96.3%
No. 100	6.42	8.4%	0.15	87.9%
No. 200	6.13	8.0%	0.075	79.9%
Pan	0.25	0.3%		
Total	15.65	20.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Sample ID DAA-03 Sample Depth 20'-22'

Visual Sample Description Brownish-Gray Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID 32

Pan Wt 191.70 grams Pan + Soil (wet) 312.15 grams

Pan + Soil (dry) 272.30 grams

Natural Moisture Content 49.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 203.34 grams

Percent Passing No. 200 Sieve 85.6%

Pan + Soil retained on No. 4 sieve

(dry) 191.70 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	26	34
Pan ID	5	6	7
Pan Wt	11.04	11.17	11.10
Pan + Soil (wet)	26.52	28.70	25.05
Pan + Soil (dry)	19.86	21.56	19.59
Moisture Content	75.5%	68.7%	64.3%
Liquid Limit	71	69	67
Liquid Limit	69		

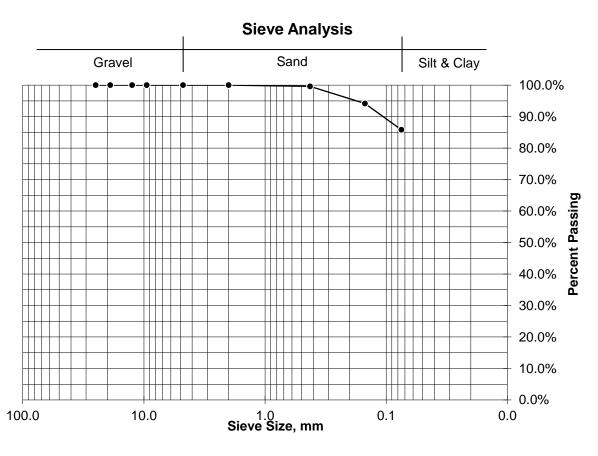
Plastic Limit

Pan ID	81	82
Pan Weight	4.33	4.24
Pan + Soil (wet)	15.52	16.80
Pan + Soil (dry)	12.13	12.93
Moisture Content	43.5%	44.5%

Plastic Limit 44
Plastic Index 25

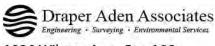
USCS Classification: ASTM D 2487

Group Symbol MH
Group Name Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-03 Sample Depth 20'-22'



Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	0.32	0.4%	0.425	99.6%
No. 100	4.37	5.4%	0.15	94.2%
No. 200	6.74	8.4%	0.075	85.8%
Pan	0.21	0.3%		
Total	11.64	14.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-03 Sample Depth 28'-30' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Visual Sample Description Light Brownish-Gray Elastic SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 189.25 grams
Pan + Soil (wet) 306.75 grams
Pan + Soil (dry) 265.88 grams

Natural Moisture Content 53.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 206.13 grams

Percent Passing No. 200 Sieve 78.0%

Pan + Soil retained on No. 4 sieve

(dry) 189.25 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	26	34
Pan ID	10	70	72
Pan Wt	11.20	10.97	11.03
Pan + Soil (wet)	26.48	25.54	28.67
Pan + Soil (dry)	19.73	19.43	21.49
Moisture Content	79.2%	72.2%	68.6%
Liquid Limit	75	73	71

Plastic Limit

Pan ID	313	316
Pan Weight	9.14	9.06
Pan + Soil (wet)	21.79	21.72
Pan + Soil (dry)	18.12	18.00
Moisture Content	40.9%	41.6%

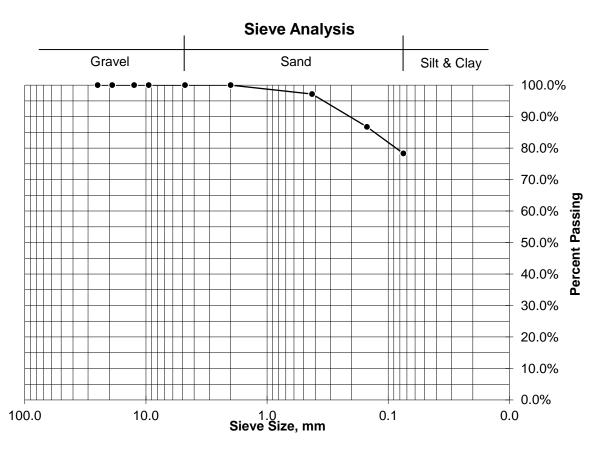
73

Plastic Limit 41
Plastic Index 32

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-03 Sample Depth 28'-30'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	2.16	2.8%	0.425	97.2%
No. 100	8.00	10.4%	0.15	86.7%
No. 200	6.47	8.4%	0.075	78.3%
Pan	0.25	0.3%		
Total	16.88	22.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-03 Sample Depth 45'-47' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 5/2/2019

Visual Sample Description Brownish-gray Elastic SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID 101

Pan Wt 122.76 grams

Pan + Soil (wet) 246.78 grams Pan + Soil (dry) 204.71 grams

Natural Moisture Content 51.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 143.75 grams

Percent Passing No. 200 Sieve 74.4%

Pan + Soil retained on No. 4 sieve

(dry) 122.76 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	21	33
Pan ID	101	105	107
Pan Wt	24.02	29.28	25.11
Pan + Soil (wet)	46.76	58.97	43.98
Pan + Soil (dry)	38.20	48.17	37.49
Moisture Content	60.4%	57.2%	52.4%
Liquid Limit	58	56	54
Liquid Limit	56		

Plastic Limit

-		
Pan ID	75	78
Pan Weight	4.26	4.24
Pan + Soil (wet)	15.29	15.10
Pan + Soil (dry)	12.50	12.35
Moisture Content	33.8%	33.9%

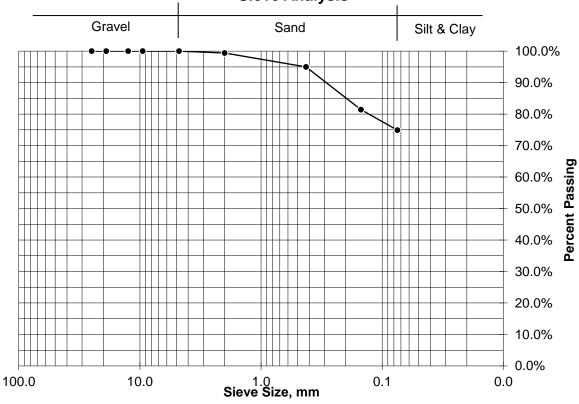
Plastic Limit 34
Plastic Index 22

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-03 Sample Depth 45'-47'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.50	0.6%	2.00	99.4%
No. 40	3.62	4.4%	0.425	95.0%
No. 100	11.10	13.5%	0.15	81.4%
No. 200	5.34	6.5%	0.075	74.9%
Pan	0.42	0.5%		
Total	20.98	25.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Engineering - Surveying · Environmental S 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Sample ID DAA-03
Sample Depth 55'-57'

Visual Sample Description Brown Sandy Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID 25

Pan Wt 194.02 grams Pan + Soil (wet) 294.69 grams

Pan + Soil (dry) 264.26 grams

Natural Moisture Content 43.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 215.15 grams

Percent Passing No. 200 Sieve 69.9%

Pan + Soil retained on No. 4 sieve

(dry) 194.02 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	24	35
Pan ID	102	92	2000
Pan Wt	23.99	25.64	25.72
Pan + Soil (wet)	44.19	43.75	44.08
Pan + Soil (dry)	35.93	36.76	37.31
Moisture Content	69.1%	62.9%	58.4%
Liquid Limit	65	63	61

Liquid Limit 63

Plastic Limit

Pan ID	314	317
Pan Weight	9.13	8.07
Pan + Soil (wet)	21.53	22.12
Pan + Soil (dry)	18.30	18.56
Moisture Content	35.2%	33.9%

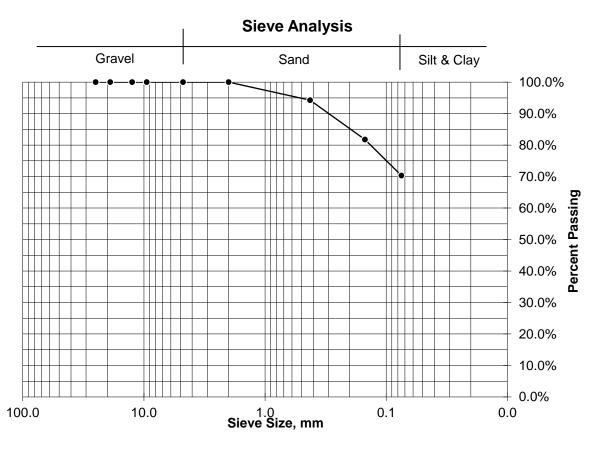
Plastic Limit 35
Plastic Index 28

USCS Classification: ASTM D 2487

Group Symbol MH

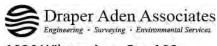
Group Name Sandy Elastic SILT

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-03

Sample Depth 55'-57'


Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	4.01	5.7%	0.425	94.3%
No. 100	8.80	12.5%	0.15	81.8%
No. 200	8.01	11.4%	0.075	70.4%
Pan	0.29	0.4%		
Total	21.11	30.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-04 Sample Depth 10'-12' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Visual Sample Description Miacecous Light Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 40

Pan Wt 192.70 grams Pan + Soil (wet) 298.16 grams

Pan + Soil (dry) 265.91 grams

Natural Moisture Content 44.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 234.75 grams

Percent Passing No. 200 Sieve 42.6%

Pan + Soil retained on No. 4 sieve

(dry) 192.70 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	25	33
Pan ID	61	71	1
Pan Wt	10.95	10.92	11.23
Pan + Soil (wet)	23.05	22.82	21.86
Pan + Soil (dry)	19.13	19.19	18.79
Moisture Content	47.9%	43.9%	40.6%
Liquid Limit	46	44	42

Plastic Limit

Pan ID	0	1138
Pan Weight	6.07	6.14
Pan + Soil (wet)	16.17	16.93
Pan + Soil (dry)	13.71	14.26
Moisture Content	32.2%	32.9%

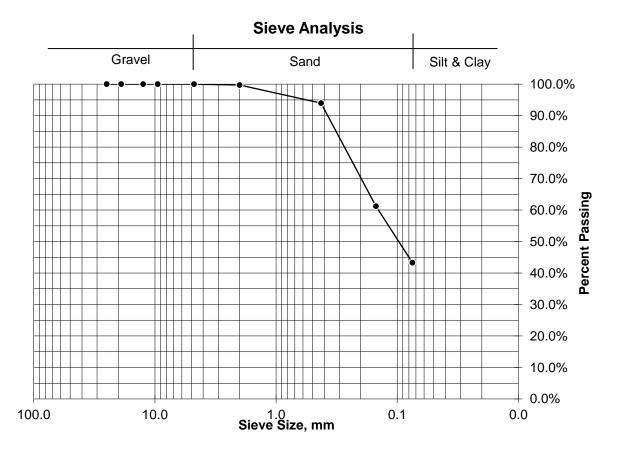
44

Plastic Limit 33
Plastic Index 11

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW


Sample ID DAA-04 Sample Depth 10'-12'

Sample Depth 10'-12'

Mechanical Sieve Analysis: ASTM D 422

SIS: AS	IM D 422			
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.22	0.3%	2.00	99.7%
No. 40	4.21	5.8%	0.425	93.9%
No. 100	23.94	32.7%	0.15	61.2%
No. 200	13.13	17.9%	0.075	43.3%
Pan	0.53	0.7%		
Total	42.03	57.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmer Ave Ste 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-04 Sample Depth 12'-14'

Visual Sample Description Light Reddish-Brown Silty SAND

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 23

Pan Wt 193.95 grams
Pan + Soil (wet) 330.26 grams
Pan + Soil (dry) 296.59 grams

Natural Moisture Content 32.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 262.13 grams

Percent Passing No. 200 Sieve 33.6%

Pan + Soil retained on No. 4 sieve

(dry) 193.95 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

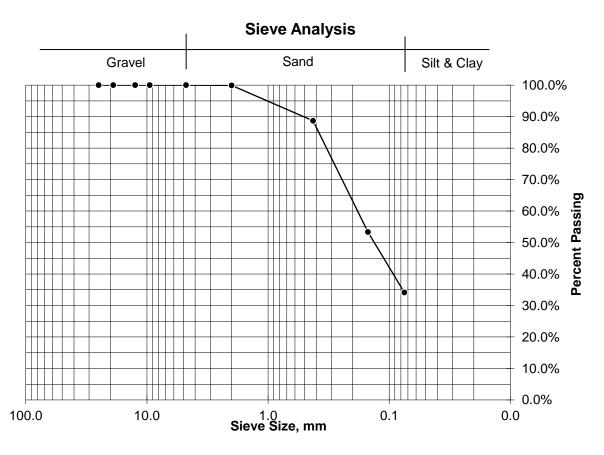
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04 Sample Depth 12'-14'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.10	0.1%	2.00	99.9%
No. 40	11.51	11.2%	0.425	88.7%
No. 100	36.26	35.3%	0.15	53.4%
No. 200	19.72	19.2%	0.075	34.1%
Pan	0.58	0.6%		
Total	68.17	66.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Sample ID DAA-04 Sample Depth 18'-20' Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 19

Pan Wt 188.56 grams Pan + Soil (wet) 291.38 grams

Pan + Soil (dry) 257.20 grams

Natural Moisture Content 49.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 226.14 grams

Percent Passing No. 200 Sieve 45.3%

Pan + Soil retained on No. 4 sieve

(dry) 188.56 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	23	31
Pan ID	705	710	711
Pan Wt	11.57	11.51	11.58
Pan + Soil (wet)	30.27	31.37	32.83
Pan + Soil (dry)	23.54	24.50	25.84
Moisture Content	56.2%	52.9%	49.0%
Liquid Limit	54	52	50

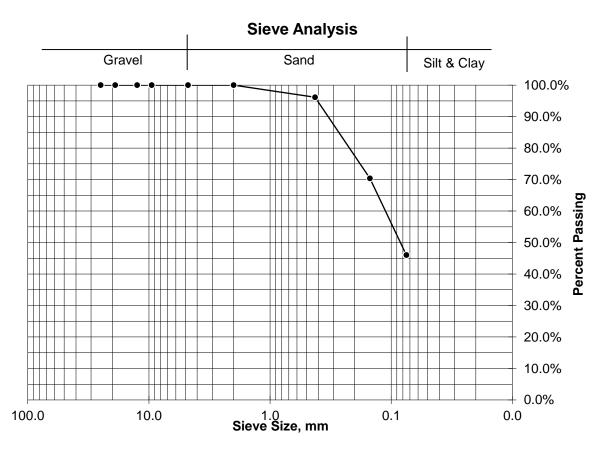
Plastic Limit

Pan ID	314	317
Pan Weight	9.15	8.08
Pan + Soil (wet)	23.17	21.93
Pan + Soil (dry)	19.04	17.84
Moisture Content	41.8%	41.9%

52

Plastic Limit 42
Plastic Index 10

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04 Sample Depth 18'-20'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	2.65	3.9%	0.425	96.1%
No. 100	17.67	25.7%	0.15	70.4%
No. 200	16.71	24.3%	0.075	46.1%
Pan	0.55	0.8%		
Total	37.58	54.8%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04 Sample Depth 24'-26'

Visual Sample Description Light Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 192.72 grams Pan + Soil (wet) 295.14 grams

Pan + Soil (dry) 267.88 grams

Natural Moisture Content 36.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

244.49 grams (dry)

Percent Passing No. 200 Sieve 31.1%

Pan + Soil retained on No. 4 sieve

(dry) 192.89 grams

99.8% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

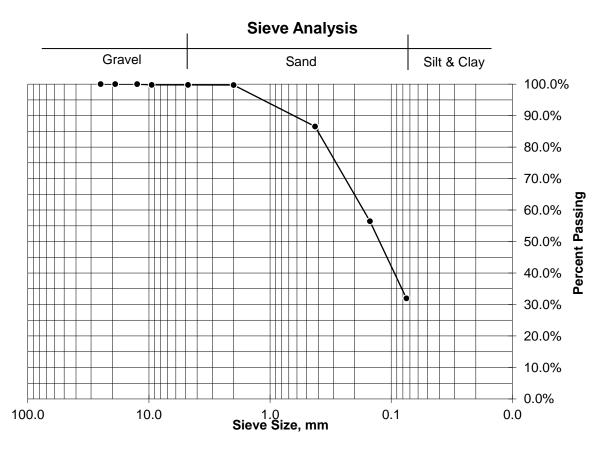
Group Symbol SM Group Name Silty SAND

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04 Sample Depth 24'-26'

/				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.17	0.2%	9.50	99.8%
No. 4	0.00	0.0%	4.75	99.8%
No. 10	0.05	0.1%	2.00	99.7%
No. 40	9.90	13.2%	0.425	86.5%
No. 100	22.60	30.1%	0.15	56.5%
No. 200	18.40	24.5%	0.075	32.0%
Pan	0.61	0.8%		
Total	51.73	68.8%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Sample ID DAA-04 Sample Depth 28'-30' Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 17

Pan Wt 188.64 grams Pan + Soil (wet) 303.75 grams

Pan + Soil (dry) 275.02 grams

Natural Moisture Content 33.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 242.56 grams

Percent Passing No. 200 Sieve 37.6%

Pan + Soil retained on No. 4 sieve

(dry) 188.64 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	26	34
Pan ID	92	102	2000
Pan Wt	25.65	24.02	25.71
Pan + Soil (wet)	48.43	42.15	44.60
Pan + Soil (dry)	41.33	36.89	39.45
Moisture Content	45.3%	40.9%	37.5%
Liquid Limit	43	41	39

Liquid Limit 41

Plastic Limit

Pan ID	22	75
Pan Weight	4.33	4.27
Pan + Soil (wet)	20.34	17.45
Pan + Soil (dry)	16.30	14.05
Moisture Content	33.8%	34.8%

Plastic Limit 34
Plastic Index 7

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

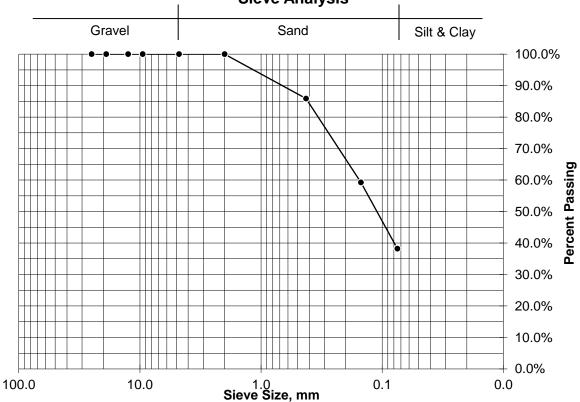
Prepared By: CBW

Sample ID DAA-04

Sample Depth 28'-30'

Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	12.20	14.1%	0.425	85.9%
No. 100	22.98	26.6%	0.15	59.3%
No. 200	18.19	21.1%	0.075	38.2%
Pan	0.55	0.6%		
Total	53.92	62.4%		


Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Sieve Analysis

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04

Sample Depth 36'-38' Visual Sample Description Brown Silty SAND

Draper Aden Associates 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 42

Pan Wt 192.28 grams Pan + Soil (wet) 296.27 grams Pan + Soil (dry) 274.70 grams

Natural Moisture Content 26.2%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

249.52 grams (dry)

Percent Passing No. 200 Sieve 30.6%

Pan + Soil retained on No. 4 sieve

(dry) 192.28 grams

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

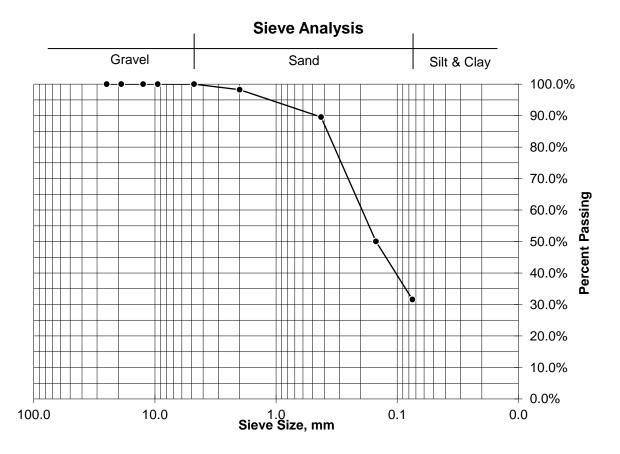
Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-04 Sample Depth 36'-38'


Mechanical Sieve Analysis: ASTM D 422						
Sieve	Weight	Percent	Sieve	Percent		
Size	Retained	Retained	Size, mm	Passing		
1"	0.00	0.0%	25.0	100.0%		
3/4"	0.00	0.0%	19.0	100.0%		
1/2"	0.00	0.0%	12.5	100.0%		
3/8"	0.00	0.0%	9.50	100.0%		
No. 4	0.00	0.0%	4.75	100.0%		
No. 10	1.44	1.7%	2.00	98.3%		
No. 40	7.17	8.7%	0.425	89.6%		
No. 100	32.57	39.5%	0.15	50.0%		
No. 200	15.17	18.4%	0.075	31.6%		
Pan	0.87	1.1%				
Total	57.22	69.4%				

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates 1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Date Tested: 3/19/2019

Sample ID DAA-05 Sample Received: 3/19/2019 Sample Depth 7'-9' Date Tested: 3/19/2019

Natural Moisture Content: ASTM D 2216

Pan ID 24

Pan Wt 186.11 grams Pan + Soil (wet) 314.11 grams Pan + Soil (dry) 305.66 grams

Visual Sample Description Light Brownish-Gray Silty SAND

Natural Moisture Content 7.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

285.82 grams (dry)

Percent Passing No. 200 Sieve 16.6%

Pan + Soil retained on No. 4 sieve

(dry) 186.11 grams

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

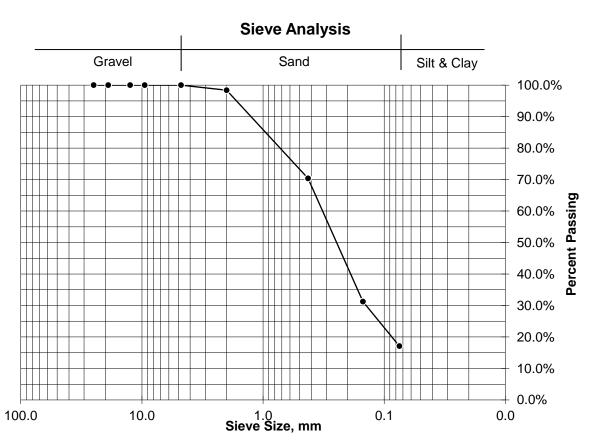
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight		
Pan + Soil (wet)	Non-plastic	
Pan + Soil (dry)		
Moisture Content		
DI = -4: - 1::4		

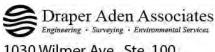
Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-05 Sample Depth 7'-9'


Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.90	1.6%	2.00	98.4%
No. 40	33.50	28.0%	0.425	70.4%
No. 100	46.78	39.1%	0.15	31.3%
No. 200	16.92	14.2%	0.075	17.1%
Pan	0.60	0.5%		
Total	99.70	83.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-05 Sample Depth 15'-17'

Visual Sample Description Light Brownish-Red Silty SAND

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/19/2019

Natural Moisture Content: ASTM D 2216

Pan ID 1

Pan Wt 195.45 grams
Pan + Soil (wet) 301.00 grams
Pan + Soil (dry) 293.74 grams

Natural Moisture Content 7.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 275.64 grams

Percent Passing No. 200 Sieve 18.4%

Pan + Soil retained on No. 4 sieve

(dry) 195.61 grams

Percent Passing No. 4 Sieve 99.8%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

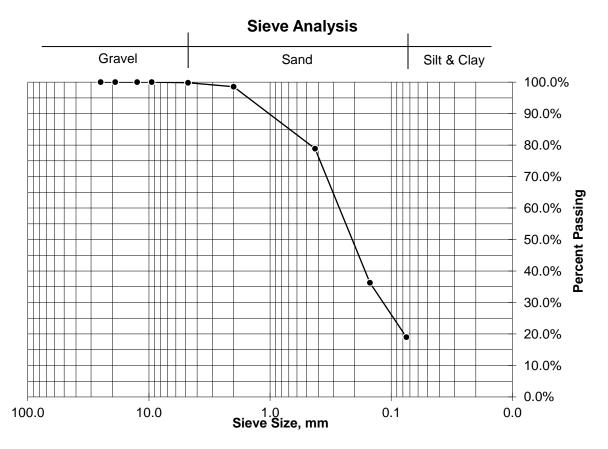
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight		
Pan + Soil (wet)	Non-plastic	
Pan + Soil (dry)		
Moisture Content		
DI = -4: - 1::4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-05 Sample Depth 15'-17'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.16	0.2%	4.75	99.8%
No. 10	1.28	1.3%	2.00	98.5%
No. 40	19.31	19.6%	0.425	78.9%
No. 100	41.90	42.6%	0.15	36.3%
No. 200	16.96	17.3%	0.075	19.0%
Pan	0.57	0.6%		
Total	80.18	81.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/19/2019

Sample ID DAA-06 Sample Depth 12'-14' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 10

Pan Wt 184.04 grams
Pan + Soil (wet) 298.73 grams
Pan + Soil (dry) 293.47 grams

Natural Moisture Content 4.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 274.71 grams

Percent Passing No. 200 Sieve 17.1%

Pan + Soil retained on No. 4 sieve

(dry) 184.04 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

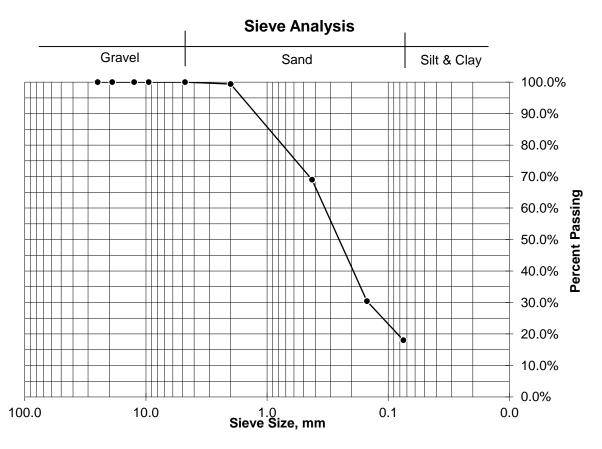
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight		
Pan + Soil (wet)	Non-plastic	
Pan + Soil (dry)		
Moisture Content		
DI4:- 1::4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-06 Sample Depth 12'-14'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.67	0.6%	2.00	99.4%
No. 40	33.23	30.4%	0.425	69.0%
No. 100	42.24	38.6%	0.15	30.4%
No. 200	13.55	12.4%	0.075	18.0%
Pan	0.96	0.9%		
Total	90.65	82.8%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

To Engineering - Surveying - Environmental 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Sample ID DAA-07 Sample Depth 10'-12'

Visual Sample Description Brownish-gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 30

Pan Wt 193.24 grams

Pan + Soil (wet) 300.01 grams Pan + Soil (dry) 275.97 grams

Natural Moisture Content 29.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 250.28 grams

Percent Passing No. 200 Sieve 31.1%

Pan + Soil retained on No. 4 sieve

(dry) 193.24 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	23	35
Pan ID	105	107	201
Pan Wt	29.29	25.13	27.70
Pan + Soil (wet)	49.71	42.20	50.08
Pan + Soil (dry)	41.92	36.00	42.44
Moisture Content	61.7%	57.0%	51.8%
Liquid Limit	58	56	54

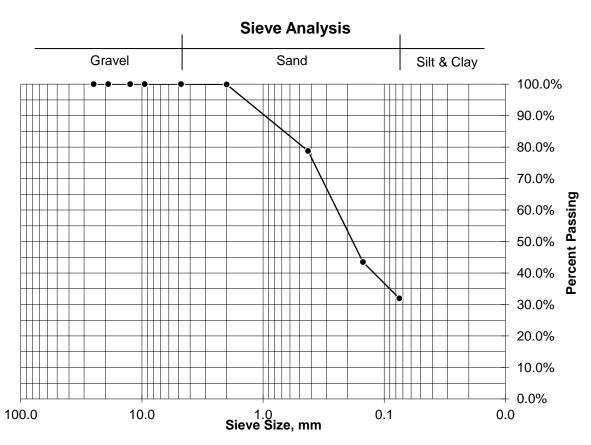
Liquid Limit 56

Plastic Limit

Pan ID	352	354
Pan Weight	9.13	9.19
Pan + Soil (wet)	20.33	20.54
Pan + Soil (dry)	17.50	17.67
Moisture Content	33.8%	33.9%

Plastic Limit 34
Plastic Index 22

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-07 Sample Depth 10'-12'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.08	0.1%	2.00	99.9%
No. 40	17.50	21.2%	0.425	78.8%
No. 100	29.16	35.2%	0.15	43.5%
No. 200	9.56	11.6%	0.075	31.9%
Pan	0.73	0.9%		
Total	57.03	68.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-07 Sample Depth 14'-16' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Visual Sample Description Micaceous Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 26

Pan Wt 194.56 grams Pan + Soil (wet) 309.39 grams

Pan + Soil (dry) 286.88 grams

Natural Moisture Content 24.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 263.01 grams

Percent Passing No. 200 Sieve 25.9%

Pan + Soil retained on No. 4 sieve

(dry) 194.56 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	28	35
Pan ID	70	9	65
Pan Wt	11.00	11.15	10.99
Pan + Soil (wet)	22.48	21.98	23.37
Pan + Soil (dry)	18.97	18.94	20.06
Moisture Content	44.0%	39.0%	36.5%
Liquid Limit	42	40	38

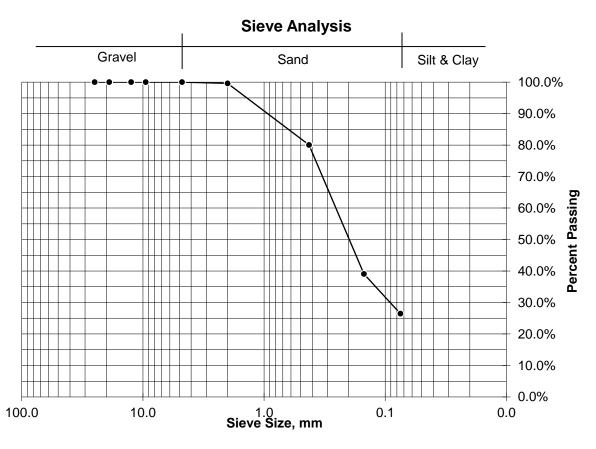
Liquid Limit 40

Plastic Limit

Pan ID	84	83
Pan Weight	4.29	4.22
Pan + Soil (wet)	15.22	15.73
Pan + Soil (dry)	12.83	13.20
Moisture Content	28.0%	28.2%

Plastic Limit 28
Plastic Index 12

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-07 Sample Depth 14'-16'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.35	0.4%	2.00	99.6%
No. 40	18.09	19.6%	0.425	80.0%
No. 100	37.80	40.9%	0.15	39.1%
No. 200	11.64	12.6%	0.075	26.5%
Pan	0.54	0.6%		
Total	68.42	74.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-07 Sample Depth 55'-57' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Visual Sample Description Dark Reddish-Brown Sandy Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 192.36 grams Pan + Soil (wet) 300.83 grams

Pan + Soil (dry) 263.58 grams

Natural Moisture Content 52.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 224.65 grams

Percent Passing No. 200 Sieve 54.7%

Pan + Soil retained on No. 4 sieve

(dry) 192.36 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	26	34
Pan ID	91	93	98
Pan Wt	24.48	30.02	30.33
Pan + Soil (wet)	39.70	51.63	45.57
Pan + Soil (dry)	33.71	43.60	40.18
Moisture Content	64.9%	59.1%	54.7%
Liquid Limit	61	59	57

Plastic Limit

Pan ID	22	84
Pan Weight	4.26	4.27
Pan + Soil (wet)	15.82	15.11
Pan + Soil (dry)	12.33	11.81
Moisture Content	43.2%	43.8%

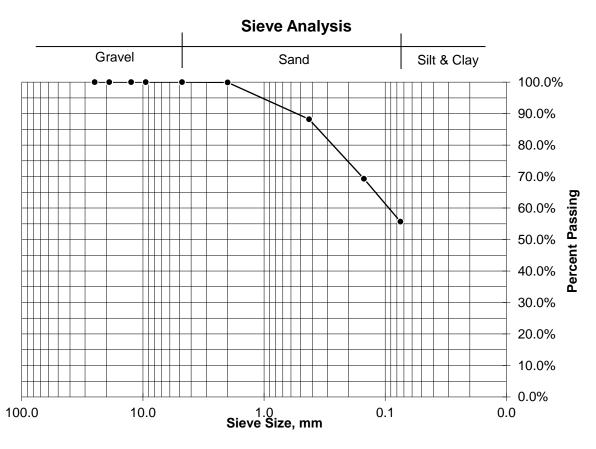
59

Plastic Limit 44
Plastic Index 15

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Sandy Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-07 Sample Depth 55'-57'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.07	0.1%	2.00	99.9%
No. 40	8.33	11.7%	0.425	88.2%
No. 100	13.45	18.9%	0.15	69.3%
No. 200	9.70	13.6%	0.075	55.7%
Pan	0.74	1.0%		
Total	32.29	45.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates 1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Sample ID DAA-08 Sample Depth 6'-8'

Visual Sample Description Reddish-Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 195.41 grams Pan + Soil (wet) 306.06 grams

Pan + Soil (dry) 278.78 grams

Natural Moisture Content 32.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 245.61 grams

Percent Passing No. 200 Sieve 39.8%

Pan + Soil retained on No. 4 sieve

(dry) 195.41 grams

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

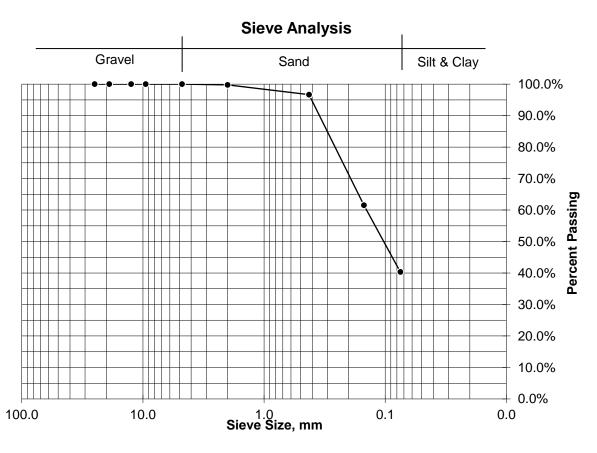
No of Blows	15	26	34
Pan ID	10	62	63
Pan Wt	11.20	10.85	10.81
Pan + Soil (wet)	28.75	27.80	27.63
Pan + Soil (dry)	22.27	21.93	22.09
Moisture Content	58.5%	53.0%	49.1%
Liquid Limit	55	53	51
Liquid Limit	53		

Plastic Limit

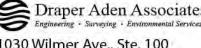
Pan ID	23	74
Pan Weight	4.34	4.26
Pan + Soil (wet)	15.71	15.31
Pan + Soil (dry)	12.03	11.73
Moisture Content	47.8%	47.9%

Plastic Limit 48 Plastic Index 5

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW


Sample ID DAA-08 Sample Depth 6'-8'

,				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.21	0.3%	2.00	99.7%
No. 40	2.57	3.1%	0.425	96.7%
No. 100	29.28	35.1%	0.15	61.5%
No. 200	17.69	21.2%	0.075	40.3%
Pan	0.45	0.5%		
Total	50.20	60.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-08 Sample Depth 10'-11.5' Visual Sample Description Gray Silty SAND Sample Recieved: 4/26/2019 Date Tested: 4/26/2019

Date Tested: 5/1/2019

Natural Moisture Content: ASTM D 2216

Pan ID 35
Pan Wt 192.71 grams
Pan + Soil (wet) 485.76 grams
Pan + Soil (dry) 399.72 grams

Natural Moisture Content 41.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 341.96 grams

Percent Passing No. 200 Sieve 27.9%

Pan + Soil retained on No. 4 sieve

(drv) 194.03 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
Liquid Limit		

Plastic Limit

Non-plastic	
	Non-plastic

Plastic Limit Plastic Index

Liquid Limit

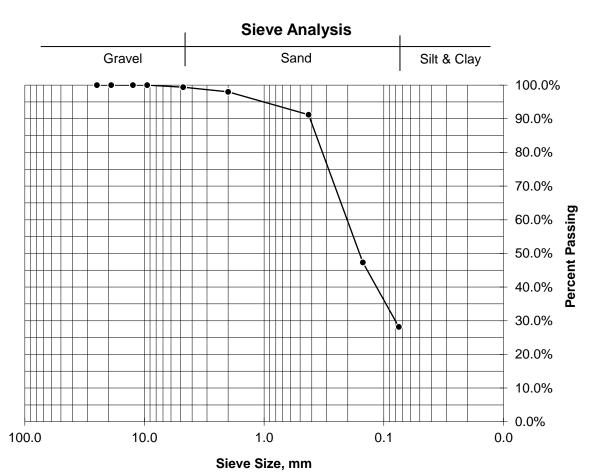
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-08 Sample Depth 10'-11.5'

Mechanical Sieve Analysis: ASTM D 422


Sieve Size	Weight Retained	Percent Retained	Sieve Size, mm	Date Tested: Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	1.32	0.6%	4.75	99.4%
No. 10	2.77	1.3%	2.0	98.0%
No. 40	14.15	6.8%	0.425	91.2%
No. 100	90.77	43.8%	0.15	47.3%
No. 200	39.67	19.2%	0.075	28.2%
Pan	0.54	0.3%		
Total	149.22	72.1%		

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

O30 Wilmer Ave. Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Date Tested: 3/22/2019

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Sample ID DAA-08 Sample Depth 12'-14'

Visual Sample Description Micaceous Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 37

Pan Wt 193.55 grams

Pan + Soil (wet) 302.87 grams

Pan + Soil (dry) 269.55 grams

Natural Moisture Content 43.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 249.49 grams

Percent Passing No. 200 Sieve 26.4%

Pan + Soil retained on No. 4 sieve

(dry) 193.55 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	22	35
Pan ID	96	169	201
Pan Wt	24.82	27.15	27.65
Pan + Soil (wet)	41.90	45.82	47.45
Pan + Soil (dry)	36.35	40.19	41.86
Moisture Content	48.1%	43.2%	39.4%
Liquid Limit	45	43	41

Liquid Limit 43

Plastic Limit

Pan ID	13	353
Pan Weight	4.28	9.12
Pan + Soil (wet)	17.45	22.46
Pan + Soil (dry)	13.97	18.94
Moisture Content	35.9%	35.8%

Plastic Limit 36
Plastic Index 7

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample Depth 12'-14'

Pan

Total

Sample ID DAA-08

Mechanical Sieve Analysis: ASTM D 422						
Sieve	Weight	Percent	Sieve	Percent		
Size	Retained	Retained	Size, mm	Passing		
1"	0.00	0.0%	25.0	100.0%		
3/4"	0.00	0.0%	19.0	100.0%		
1/2"	0.00	0.0%	12.5	100.0%		
3/8"	0.00	0.0%	9.50	100.0%		
No. 4	0.00	0.0%	4.75	100.0%		
No. 10	0.45	0.6%	2.00	99.4%		
No. 40	3.48	4.6%	0.425	94.8%		
No. 100	33.13	43.6%	0.15	51.2%		
No. 200	17.95	23.6%	0.075	27.6%		

1.2%

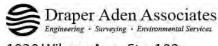
73.6%

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227


Sieve Analysis Gravel Sand Silt & Clay 100.0% 90.0% 80.0% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% - 0.0% 100.0 10.0 1.0 Sieve Size, mm 0.1 0.0

0.92

55.93

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-08 Sample Depth 20'-22' Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Visual Sample Description Micaceous Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 20

Pan Wt 189.94 grams Pan + Soil (wet) 298.08 grams

Pan + Soil (dry) 274.42 grams

Natural Moisture Content 28.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 255.08 grams

Percent Passing No. 200 Sieve 22.9%

Pan + Soil retained on No. 4 sieve

(dry) 190.42 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

Group Symbol SM

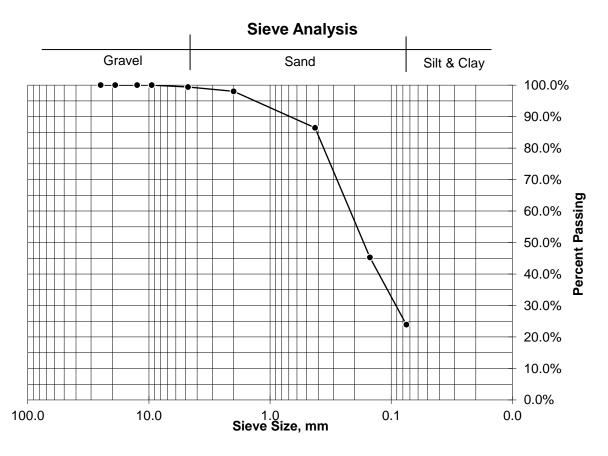
Group Name Silty SAND

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample Depth 20'-22' **Mechanical Sieve Analysis: ASTM D 422**

Sample ID DAA-08


Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.48	0.6%	4.75	99.4%
No. 10	1.16	1.4%	2.00	98.1%
No. 40	9.80	11.6%	0.425	86.5%
No. 100	34.77	41.2%	0.15	45.3%
No. 200	18.07	21.4%	0.075	23.9%
Pan	0.83	1.0%		
Total	65.11	77.1%		

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 4/2/2019

Sample ID DAA-09
Sample Depth 6'-8'
Visual Sample Description Light Brow

Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 38

Pan Wt 193.63 grams Pan + Soil (wet) 296.08 grams

Pan + Soil (dry) 271.63 grams

Natural Moisture Content 31.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 238.65 grams

Percent Passing No. 200 Sieve 42.3%

Pan + Soil retained on No. 4 sieve

(dry) 193.63 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	23	34
Pan ID	6	9	62
Pan Wt	11.18	11.14	10.87
Pan + Soil (wet)	20.78	31.60	21.61
Pan + Soil (dry)	17.11	24.10	17.87
Moisture Content	61.8%	57.9%	53.4%
Liquid Limit	59	57	55

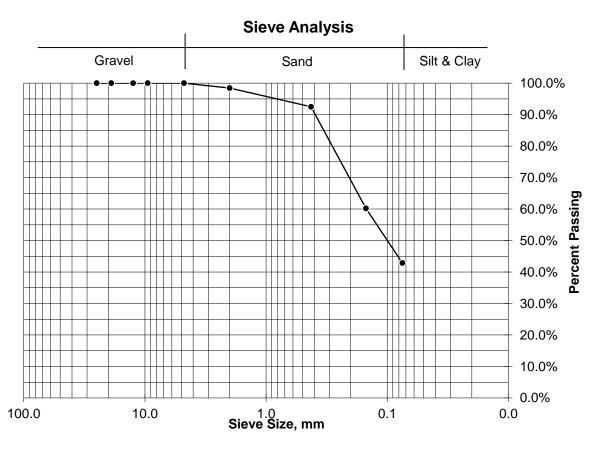
Liquid Limit 57

Plastic Limit

Pan ID	79	317
Pan Weight	4.24	8.09
Pan + Soil (wet)	14.44	18.73
Pan + Soil (dry)	11.31	15.46
Moisture Content	44.3%	44.4%

Plastic Limit 44
Plastic Index 13

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-09 Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.21	1.6%	2.00	98.4%
No. 40	4.63	5.9%	0.425	92.5%
No. 100	25.17	32.3%	0.15	60.2%
No. 200	13.53	17.3%	0.075	42.9%
Pan	0.48	0.6%		
Total	45.02	57.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Date Tested: 3/22/2019

Army Corps of Engineers Certified Laboratory

Sample ID DAA-09 Sample Received: 3/19/2019
Sample Depth 20'-22' Date Tested: 3/19/2019

Visual Sample Description Micaceous Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 31

Pan Wt 193.03 grams
Pan + Soil (wet) 308.43 grams

Pan + Soil (dry) 295.67 grams

Natural Moisture Content 12.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 278.85 grams

Percent Passing No. 200 Sieve 16.4%

Pan + Soil retained on No. 4 sieve

(dry) 193.49 grams

Percent Passing No. 4 Sieve 99.6%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

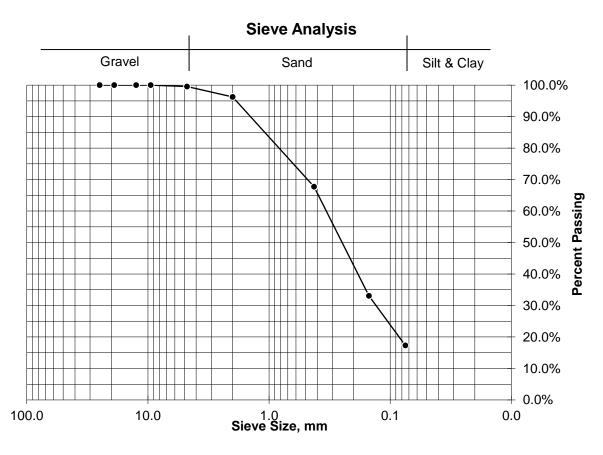
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-09 Sample Depth 20'-22'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.46	0.4%	4.75	99.6%
No. 10	3.36	3.3%	2.00	96.3%
No. 40	29.30	28.5%	0.425	67.7%
No. 100	35.57	34.7%	0.15	33.1%
No. 200	16.19	15.8%	0.075	17.3%
Pan	0.93	0.9%		
Total	85.81	83.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Date Tested: 3/25/2019

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Sample ID DAA-10 Sample Depth 22'-24'

Visual Sample Description Brownish Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 101

Pan Wt 122.79 grams Pan + Soil (wet) 236.05 grams

Pan + Soil (dry) 224.08 grams

Natural Moisture Content 11.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 206.06 grams

Percent Passing No. 200 Sieve 17.8%

Pan + Soil retained on No. 4 sieve

(dry) 125.12 grams

Percent Passing No. 4 Sieve 97.7%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	24	34
Pan ID	2000	92	102
Pan Wt	25.70	25.63	24.01
Pan + Soil (wet)	37.17	36.23	37.46
Pan + Soil (dry)	33.92	33.39	34.14
Moisture Content	39.5%	36.6%	32.8%
Liquid Limit	38	36	34

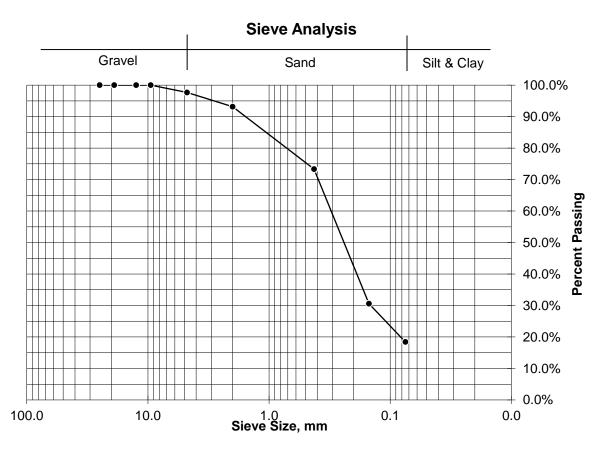
Plastic Limit

Pan ID	315	353
Pan Weight	9.14	9.12
Pan + Soil (wet)	22.89	22.11
Pan + Soil (dry)	19.88	19.28
Moisture Content	28.0%	27.9%

36

Plastic Limit 28
Plastic Index 8

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-10 Sample Depth 22'-24'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	2.33	2.3%	4.75	97.7%
No. 10	4.62	4.6%	2.00	93.1%
No. 40	20.05	19.8%	0.425	73.3%
No. 100	43.31	42.8%	0.15	30.6%
No. 200	12.32	12.2%	0.075	18.4%
Pan	0.64	0.6%		
Total	83.27	82.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-10 Sample Depth 24'-26' Visual Sample Description Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 39

Pan Wt 192.99 grams Pan + Soil (wet) 305.74 grams Pan + Soil (dry) 294.04 grams

Natural Moisture Content 11.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 264.20 grams

Percent Passing No. 200 Sieve 29.5%

Pan + Soil retained on No. 4 sieve

(dry) 192.99 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**

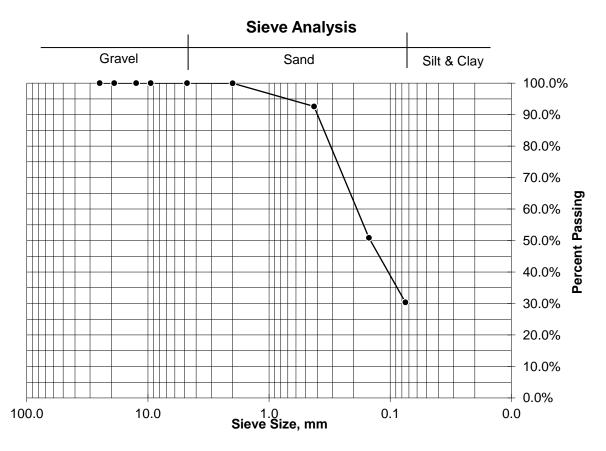
1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-10

Sample Depth 24'-26'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.03	0.0%	2.00	100.0%
No. 40	7.45	7.4%	0.425	92.6%
No. 100	42.14	41.7%	0.15	50.9%
No. 200	20.70	20.5%	0.075	30.4%
Pan	0.88	0.9%		
Total	71.20	70.5%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-12 Sample Depth 25'-27' Visual Sample Description Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 33

Pan Wt 193.68 grams
Pan + Soil (wet) 312.10 grams
Pan + Soil (dry) 307.83 grams

Natural Moisture Content 3.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 287.06 grams

Percent Passing No. 200 Sieve 18.2%

Pan + Soil retained on No. 4 sieve

(dry) 194.40 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

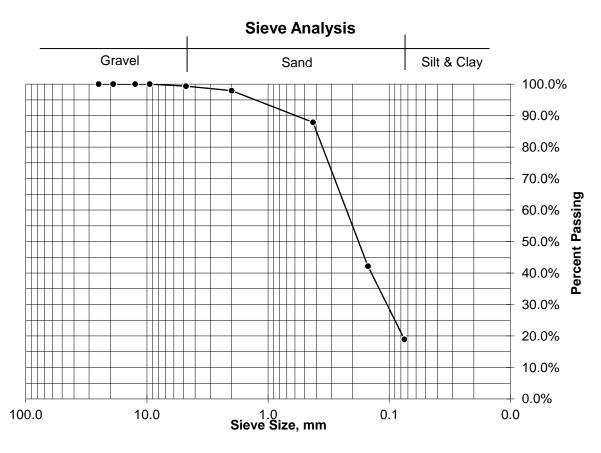
Group Symbol **SM**Group Name **Silty SAND**

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-12 Sample Depth 25'-27'

Weight	Percent	Sieve	Percent
Retained	Retained	Size, mm	Passing
0.00	0.0%	25.0	100.0%
0.00	0.0%	19.0	100.0%
0.00	0.0%	12.5	100.0%
0.00	0.0%	9.50	100.0%
0.72	0.6%	4.75	99.4%
1.65	1.4%	2.00	97.9%
11.45	10.0%	0.425	87.9%
52.16	45.7%	0.15	42.2%
26.51	23.2%	0.075	19.0%
0.87	0.8%		
93.36	81.8%		
	Retained 0.00 0.00 0.00 0.00 0.72 1.65 11.45 52.16 26.51 0.87	Retained Retained 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.00 0.0% 0.72 0.6% 1.65 1.4% 11.45 10.0% 52.16 45.7% 26.51 23.2% 0.87 0.8%	Retained Retained Size, mm 0.00 0.0% 25.0 0.00 0.0% 19.0 0.00 0.0% 12.5 0.00 0.0% 9.50 0.72 0.6% 4.75 1.65 1.4% 2.00 11.45 10.0% 0.425 52.16 45.7% 0.15 26.51 23.2% 0.075 0.87 0.8%

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Sample ID DAA-13
Sample Depth 8'-10'
Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 22

Pan Wt 189.00 grams Pan + Soil (wet) 296.08 grams Pan + Soil (dry) 277.42 grams

Natural Moisture Content 21.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 250.40 grams

Percent Passing No. 200 Sieve 30.6%

Pan + Soil retained on No. 4 sieve

(dry) 189.00 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	24	35
Pan ID	94	108	109
Pan Wt	23.81	33.16	25.00
Pan + Soil (wet)	42.00	51.14	42.51
Pan + Soil (dry)	36.56	46.05	37.92
Moisture Content	42.7%	39.5%	35.5%
Liquid Limit	41	39	37
Liquid Limit	39		

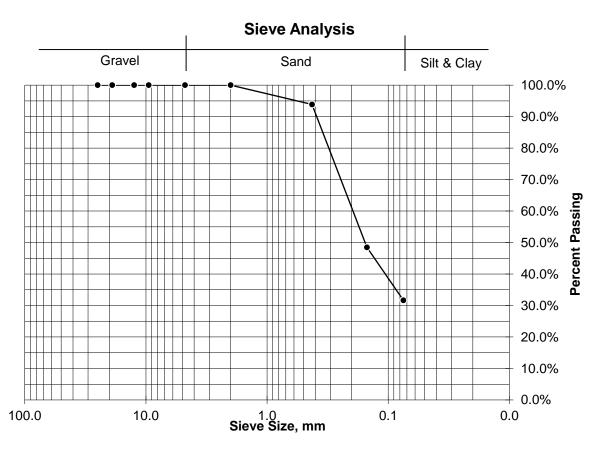
Plastic Limit

<u>-</u>		
Pan ID	313	316
Pan Weight	9.17	9.09
Pan + Soil (wet)	22.43	22.78
Pan + Soil (dry)	19.42	19.68
Moisture Content	29.4%	29.3%

Plastic Limit 29
Plastic Index 10

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-13

Sample Depth 8'-10'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	5.40	6.1%	0.425	93.9%
No. 100	40.17	45.4%	0.15	48.5%
No. 200	14.84	16.8%	0.075	31.7%
Pan	0.98	1.1%		
Total	61.39	69.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

030 Wilmer Ave., Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/22/2019

Sample ID DAA-13 Sample Depth 14'-16'

Visual Sample Description Micaceous Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 36

Pan Wt 193.75 grams Pan + Soil (wet) 296.27 grams

Pan + Soil (dry) 284.81 grams

Natural Moisture Content 12.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 261.66 grams

Percent Passing No. 200 Sieve 25.4%

Pan + Soil retained on No. 4 sieve

(dry) 194.29 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

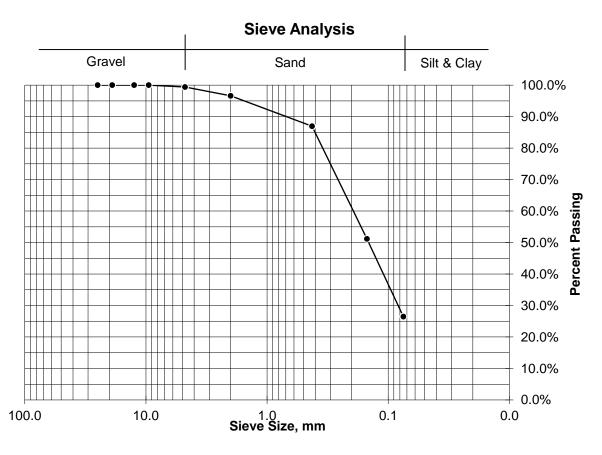
No of Blows	16	25	32
Pan ID	101	105	107
Pan Wt	24.02	29.28	25.11
Pan + Soil (wet)	41.09	50.43	44.11
Pan + Soil (dry)	36.36	45.01	39.58
Moisture Content	38.3%	34.5%	31.3%
Liquid Limit	36	34	32
Liquid Limit	34		

Plastic Limit

Pan ID	2	4
Pan Weight	9.03	9.02
Pan + Soil (wet)	26.00	24.05
Pan + Soil (dry)	22.37	20.83
Moisture Content	27.2%	27.3%

Plastic Limit 27
Plastic Index 7

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-13 Sample Depth 14'-16'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.54	0.6%	4.75	99.4%
No. 10	2.55	2.8%	2.00	96.6%
No. 40	8.77	9.6%	0.425	87.0%
No. 100	32.59	35.8%	0.15	51.2%
No. 200	22.50	24.7%	0.075	26.5%
Pan	0.95	1.0%		
Total	67.90	74.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Engineering - Surveying · Environmental S 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Sample ID DAA-13 Sample Depth 26'-28'

Visual Sample Description Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 42

Pan Wt 192.26 grams Pan + Soil (wet) 295.02 grams

Pan + Soil (dry) 279.80 grams

Natural Moisture Content 17.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 264.47 grams

Percent Passing No. 200 Sieve 17.5%

Pan + Soil retained on No. 4 sieve

(dry) 192.26 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit
Plastic Index

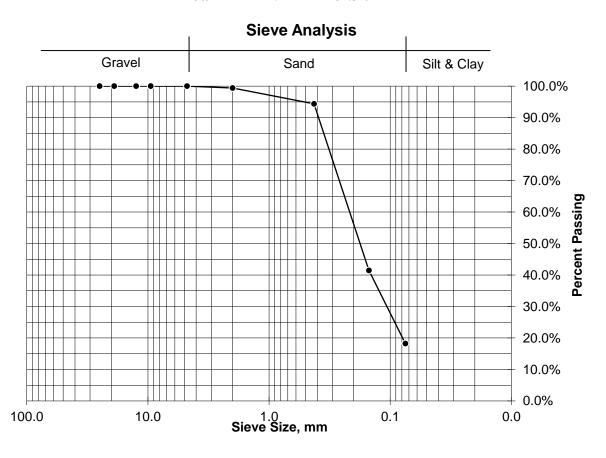
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample Depth 26'-28' **Mechanical Sieve Analysis: ASTM D 422**

Sample ID DAA-13


Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.50	0.6%	2.00	99.4%
No. 40	4.43	5.1%	0.425	94.4%
No. 100	46.33	52.9%	0.15	41.4%
No. 200	20.30	23.2%	0.075	18.3%
Pan	0.65	0.7%		
Total	72.21	82.5%		

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/21/2019

Sample ID DAA-13
Sample Depth 28'-30'
Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 27

Pan Wt 193.73 grams Pan + Soil (wet) 306.26 grams

Pan + Soil (dry) 291.52 grams

Natural Moisture Content 15.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 260.69 grams

Percent Passing No. 200 Sieve 31.5%

Pan + Soil retained on No. 4 sieve

(dry) 193.73 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

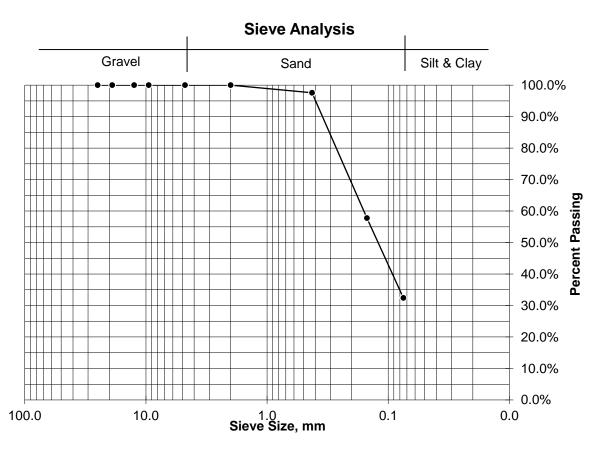
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

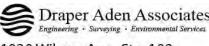
Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-13 Sample Depth 28'-30'



Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	2.36	2.4%	0.425	97.6%
No. 100	38.90	39.8%	0.15	57.8%
No. 200	24.81	25.4%	0.075	32.4%
Pan	0.86	0.9%		
Total	66.93	68.4%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Sample Received: 3/19/2019

Date Tested: 3/22/2019

Date Tested: 3/26/2019

Army Corps of Engineers Certified Laboratory

Sample ID DAA-14 Sample Depth 6'-8'

Visual Sample Description Reddish-Brown Sandy Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 195.48 grams

Pan + Soil (wet) 297.07 grams Pan + Soil (dry) 273.14 grams

Natural Moisture Content 30.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 230.92 grams

Percent Passing No. 200 Sieve 54.4%

Pan + Soil retained on No. 4 sieve

(dry) 195.48 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	27	33
Pan ID	2000	102	92
Pan Wt	25.73	24.03	25.68
Pan + Soil (wet)	36.84	35.62	36.77
Pan + Soil (dry)	32.18	31.05	32.53
Moisture Content	72.2%	65.1%	61.9%
Liquid Limit	68	66	64
Liquid Limit	66		

Plastic Limit

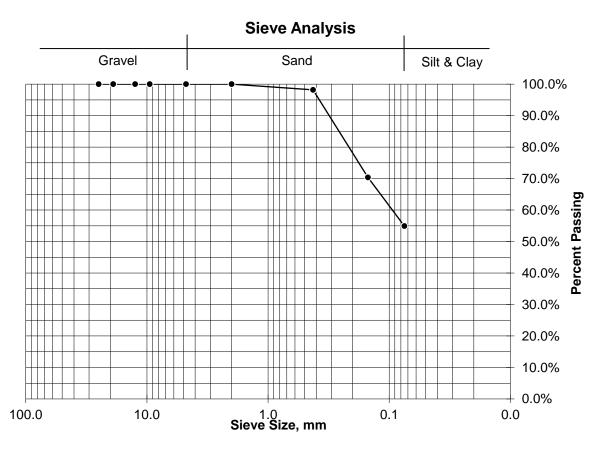
-		
Pan ID	19	18
Pan Weight	4.36	4.27
Pan + Soil (wet)	15.87	14.96
Pan + Soil (dry)	12.53	11.89
Moisture Content	40.9%	40.3%

Plastic Limit 41
Plastic Index 25

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Sandy Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Depth 6'-8'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	1.40	1.8%	0.425	98.2%
No. 100	21.59	27.8%	0.15	70.4%
No. 200	12.01	15.5%	0.075	54.9%
Pan	0.44	0.6%		
Total	35.44	45.6%		

Green Rideg, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-14 Sample Depth 10'-12' Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/26/2019

Visual Sample Description Reddish-Brown Elastic SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID 33

Pan Wt 193.65 grams Pan + Soil (wet) 299.18 grams

Pan + Soil (dry) 270.84 grams

Natural Moisture Content 36.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 215.35 grams

Percent Passing No. 200 Sieve 71.9%

Pan + Soil retained on No. 4 sieve

(dry) 193.65 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	28	33
Pan ID	107	101	105
Pan Wt	25.12	24.01	29.31
Pan + Soil (wet)	35.16	35.82	40.30
Pan + Soil (dry)	30.82	30.92	35.88
Moisture Content	76.1%	70.9%	67.2%
Liquid Limit	74	72	70

Liquid Limit 72

Plastic Limit

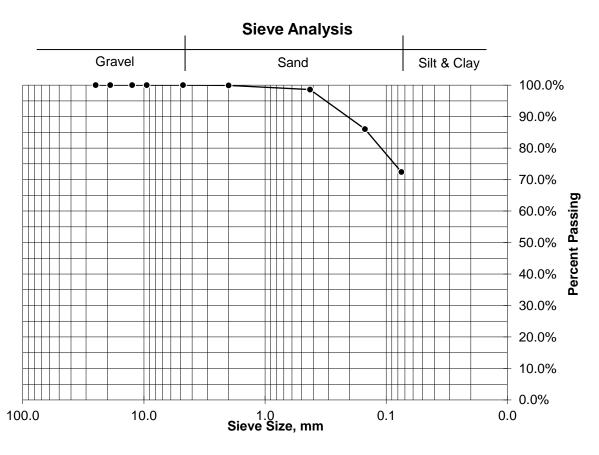
Pan ID	76	79
Pan Weight	4.21	4.24
Pan + Soil (wet)	14.55	15.55
Pan + Soil (dry)	11.80	12.47
Moisture Content	36.2%	37.4%

Plastic Limit 37
Plastic Index 35

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Rideg, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Depth 10'-12'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.08	0.1%	2.00	99.9%
No. 40	1.01	1.3%	0.425	98.6%
No. 100	9.67	12.5%	0.15	86.1%
No. 200	10.52	13.6%	0.075	72.4%
Pan	0.42	0.5%		
Total	21.70	28.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-14 Sample Depth 14'-16'

Visual Sample Description Reddish-Brown Sandy Elastic SILT

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/26/2019

Natural Moisture Content: ASTM D 2216

Pan ID 15

Pan Wt 188.25 grams Pan + Soil (wet) 288.54 grams

Pan + Soil (dry) 263.15 grams

Natural Moisture Content 33.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 224.55 grams

Percent Passing No. 200 Sieve 51.5%

Pan + Soil retained on No. 4 sieve

(dry) 189.26 grams

Percent Passing No. 4 Sieve 98.7%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	27	33
Pan ID	91	98	93
Pan Wt	24.52	30.34	30.11
Pan + Soil (wet)	36.76	43.64	46.23
Pan + Soil (dry)	31.62	38.37	40.07
Moisture Content	72.3%	65.6%	61.9%
Liquid Limit	68	66	64

Plastic Limit

Pan ID	316	2
Pan Weight	9.08	9.03
Pan + Soil (wet)	19.78	19.28
Pan + Soil (dry)	16.62	16.21
Moisture Content	41.9%	42.8%

66

Plastic Limit 42
Plastic Index 24

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Sandy Elastic SILT

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Depth 14'-16'

Mechanical Sieve Analysis: ASTM D 422

No. 200

Pan

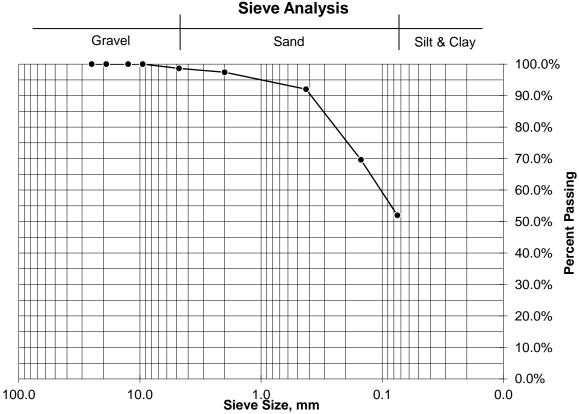
Total

, -		==			
	Sieve	Weight	Percent	Sieve	Percent
	Size	Retained	Retained	Size, mm	Passing
	1"	0.00	0.0%	25.0	100.0%
	3/4"	0.00	0.0%	19.0	100.0%
	1/2"	0.00	0.0%	12.5	100.0%
	3/8"	0.00	0.0%	9.50	100.0%
	No. 4	1.01	1.3%	4.75	98.7%
	No. 10	0.90	1.2%	2.00	97.4%
	No. 40	4.07	5.4%	0.425	92.0%
Ν	lo. 100	16.76	22.4%	0.15	69.6%

17.7%

0.4%

48.4%


0.075

52.0%

13.22

0.31

36.27

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/19/2019

Date Tested: 3/25/2019

Sample ID DAA-14
Sample Depth 24'-26'

Visual Sample Description Reddish-Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 27

Pan Wt 193.72 grams

Pan + Soil (wet) 300.75 grams Pan + Soil (dry) 271.07 grams

Natural Moisture Content 38.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 233.89 grams

Percent Passing No. 200 Sieve 48.1%

Pan + Soil retained on No. 4 sieve

(dry) 193.88 grams

Percent Passing No. 4 Sieve 99.8%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	27	33
Pan ID	103	104	97
Pan Wt	27.43	26.24	26.09
Pan + Soil (wet)	37.76	36.38	36.36
Pan + Soil (dry)	33.93	32.79	32.88
Moisture Content	58.9%	54.8%	51.2%
Liquid Limit	57	55	53

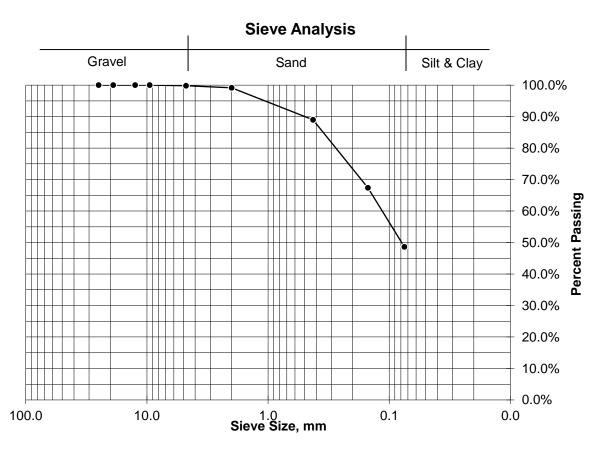
Plastic Limit

_		
Pan ID	83	4
Pan Weight	4.23	9.02
Pan + Soil (wet)	14.83	19.32
Pan + Soil (dry)	11.81	16.39
Moisture Content	39.8%	39.8%

55

Plastic Limit 40 Plastic Index 15

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Depth 24'-26'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.16	0.2%	4.75	99.8%
No. 10	0.50	0.6%	2.00	99.1%
No. 40	7.87	10.2%	0.425	89.0%
No. 100	16.71	21.6%	0.15	67.4%
No. 200	14.49	18.7%	0.075	48.6%
Pan	0.44	0.6%		
Total	40.17	51.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Received: 3/19/2019

Draper Aden Associates

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Date Tested: 3/22/2019

Date Tested: 3/25/2019

Natural Moisture Content: ASTM D 2216

Pan ID 8

Visual Sample Description Light Brown Silty SAND

Sample Depth 26'-28'

Pan Wt 187.14 grams
Pan + Soil (wet) 289.88 grams

Pan + Soil (dry) 273.99 grams

Natural Moisture Content 18.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 251.07 grams

Percent Passing No. 200 Sieve 26.4%

Pan + Soil retained on No. 4 sieve

(dry) 189.22 grams

Percent Passing No. 4 Sieve 97.6%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

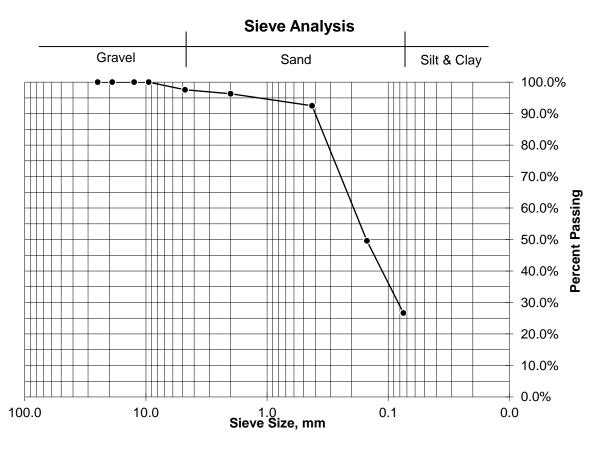
Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Mechanical Sieve Analysis: ASTM D 422

Sample Depth 26'-28'

Sample ID DAA-14


Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	2.08	2.4%	4.75	97.6%
No. 10	1.14	1.3%	2.00	96.3%
No. 40	3.30	3.8%	0.425	92.5%
No. 100	37.27	42.9%	0.15	49.6%
No. 200	19.87	22.9%	0.075	26.7%
Pan	0.27	0.3%		
Total	63.93	73.6%		

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying - Environmental Services

1030 Wilmer Ave., Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-14 Sample Depth 30'-32'

Visual Sample Description Light Reddish-Brown Silty SAND

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 17

Pan Wt 188.67 grams Pan + Soil (wet) 296.57 grams

Pan + Soil (dry) 283.45 grams

Natural Moisture Content 13.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 259.80 grams

Percent Passing No. 200 Sieve 25.0%

Pan + Soil retained on No. 4 sieve

(dry) 195.36 grams

Percent Passing No. 4 Sieve 92.9%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

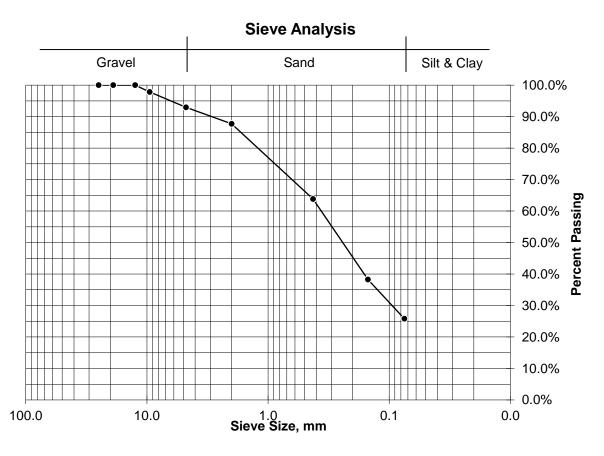
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		-

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-14 Sample Depth 30'-32'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	2.07	2.2%	9.50	97.8%
No. 4	4.62	4.9%	4.75	92.9%
No. 10	4.96	5.2%	2.00	87.7%
No. 40	22.61	23.9%	0.425	63.9%
No. 100	24.27	25.6%	0.15	38.2%
No. 200	11.80	12.4%	0.075	25.8%
Pan	0.79	0.8%		
Total	71.12	75.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Sample ID DAA-17 Sample Depth 6'-8' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 194.50 grams Pan + Soil (wet) 301.33 grams

Pan + Soil (dry) 292.45 grams

Natural Moisture Content 9.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

265.18 grams (dry)

Percent Passing No. 200 Sieve 27.8%

Pan + Soil retained on No. 4 sieve

(dry) 194.76 grams

99.7% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID		
Pan Wt	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

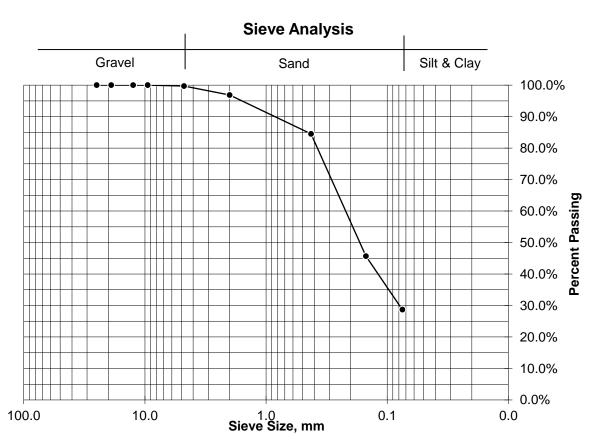
Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
51		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-17

Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.26	0.3%	4.75	99.7%
No. 10	2.81	2.9%	2.00	96.9%
No. 40	12.08	12.3%	0.425	84.5%
No. 100	38.03	38.8%	0.15	45.7%
No. 200	16.67	17.0%	0.075	28.7%
Pan	0.82	0.8%		
Total	70.67	72.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/25/2019

Sample ID DAA-17 Sample Depth 10'-12'

Visual Sample Description Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 30

Pan Wt 193.25 grams Pan + Soil (wet) 298.76 grams

Pan + Soil (dry) 290.37 grams

Natural Moisture Content 8.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 265.51 grams

Percent Passing No. 200 Sieve 25.6%

Pan + Soil retained on No. 4 sieve

(dry) 195.30 grams

Percent Passing No. 4 Sieve 97.9%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	23	32
Pan ID	169	201	96
Pan Wt	27.16	27.65	24.85
Pan + Soil (wet)	38.29	38.22	35.06
Pan + Soil (dry)	34.85	35.10	32.26
Moisture Content	44.7%	41.9%	37.9%
Liquid Limit	43	41	39

Plastic Limit

-		
Pan ID	82	13
Pan Weight	4.23	4.27
Pan + Soil (wet)	14.55	15.29
Pan + Soil (dry)	12.39	12.99
Moisture Content	26.5%	26.4%

41

Plastic Limit 26
Plastic Index 14

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

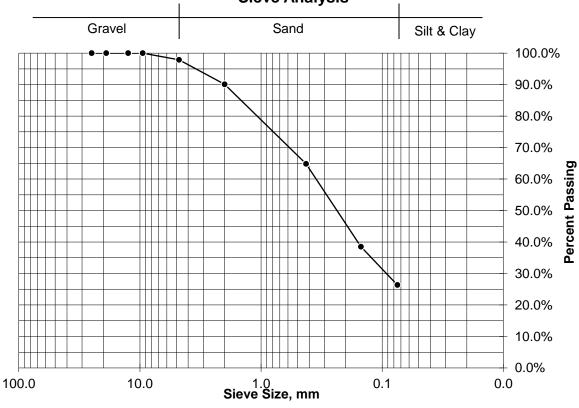
Sample ID DAA-17 Sample Depth 10'-12'

Mechanical Sieve Analysis: ASTM D 422

Pan

Total

,				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	2.05	2.1%	4.75	97.9%
No. 10	7.56	7.8%	2.00	90.1%
No. 40	24.55	25.3%	0.425	64.8%
No. 100	25.55	26.3%	0.15	38.5%
No. 200	11.82	12.2%	0.075	26.3%

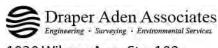

0.8%

74.4%

Sieve Analysis

0.73

72.26


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-18

Visual Sample Description Light Brown Silty SAND

Sample Depth 6'-8'

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 34

Pan Wt 192.79 grams Pan + Soil (wet) 310.43 grams

Pan + Soil (dry) 285.19 grams

Natural Moisture Content 27.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 263.85 grams

Percent Passing No. 200 Sieve 23.1%

Pan + Soil retained on No. 4 sieve

(dry) 194.87 grams

97.7% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

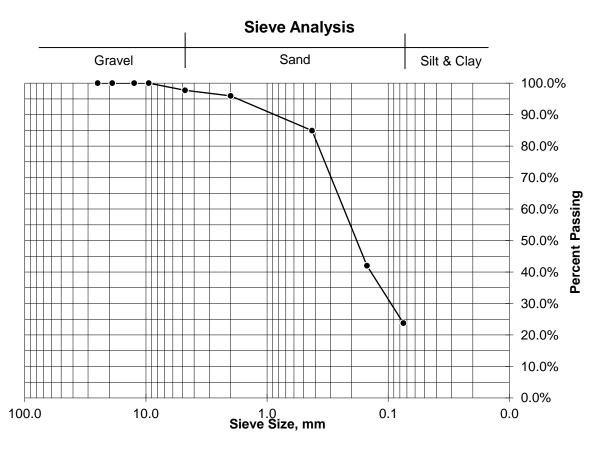
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-18 Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	2.08	2.3%	4.75	97.7%
No. 10	1.64	1.8%	2.00	96.0%
No. 40	10.19	11.0%	0.425	84.9%
No. 100	39.64	42.9%	0.15	42.0%
No. 200	16.87	18.3%	0.075	23.8%
Pan	0.63	0.7%		
Total	71.05	76.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/29/2019

Sample ID DAA-19 Sample Depth 6'-8'

Visual Sample Description Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 35

Pan Wt 192.73 grams

Pan + Soil (wet) 294.78 grams

Pan + Soil (dry) 279.51 grams

Natural Moisture Content 17.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 260.05 grams

Percent Passing No. 200 Sieve 22.4%

Pan + Soil retained on No. 4 sieve

(dry) 192.73 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	26	33
Pan ID	10	7	72
Pan Wt	11.33	10.98	11.06
Pan + Soil (wet)	27.79	26.58	25.37
Pan + Soil (dry)	22.73	22.04	21.45
Moisture Content	44.4%	41.0%	37.7%
Liquid Limit	43	41	39

Plastic Limit

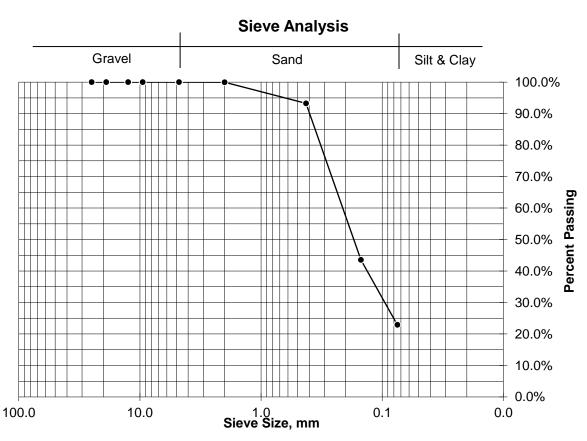
Pan ID	82	13
Pan Weight	4.23	4.27
Pan + Soil (wet)	14.55	15.29
Pan + Soil (dry)	12.39	12.99
Moisture Content	26.5%	26.4%

41

Plastic Limit 26
Plastic Index 15

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-19

Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.04	0.0%	2.00	100.0%
No. 40	5.79	6.7%	0.425	93.3%
No. 100	43.16	49.7%	0.15	43.5%
No. 200	17.92	20.6%	0.075	22.9%
Pan	0.41	0.5%		
Total	67.32	77.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-20 Sample Depth 14'-16'

Visual Sample Description Brownish-gray Silty SAND

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/23/2019

Natural Moisture Content: ASTM D 2216

Pan ID 22

Pan Wt 189.03 grams Pan + Soil (wet) 291.46 grams

Pan + Soil (dry) 280.94 grams

Natural Moisture Content 11.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 256.41 grams

Percent Passing No. 200 Sieve 26.7%

Pan + Soil retained on No. 4 sieve

(dry) 191.13 grams

Percent Passing No. 4 Sieve 97.7%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

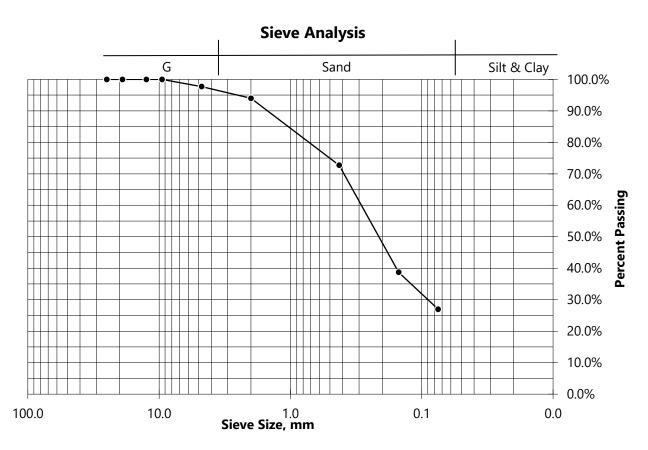
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-20 Sample Depth 14'-16'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	2.10	2.3%	4.75	97.7%
No. 10	3.41	3.7%	2.00	94.0%
No. 40	19.56	21.3%	0.425	72.7%
No. 100	31.24	34.0%	0.15	38.7%
No. 200	10.81	11.8%	0.075	27.0%
Pan	0.21	0.2%		
Total	67.33	73.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/25/2019

Sample ID DAA-21 Sample Depth 6'-8'

Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 20

Pan Wt 189.93 grams Pan + Soil (wet) 298.07 grams

Pan + Soil (dry) 284.10 grams

Natural Moisture Content 14.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 260.46 grams

Percent Passing No. 200 Sieve 25.1%

Pan + Soil retained on No. 4 sieve

(dry) 189.93 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	23	31
Pan ID	72	70	10
Pan Wt	11.06	10.97	11.27
Pan + Soil (wet)	21.29	21.05	21.31
Pan + Soil (dry)	18.25	18.25	18.70
Moisture Content	42.2%	38.5%	35.1%
Liquid Limit	40	38	36

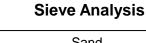
Liquid Limit 38

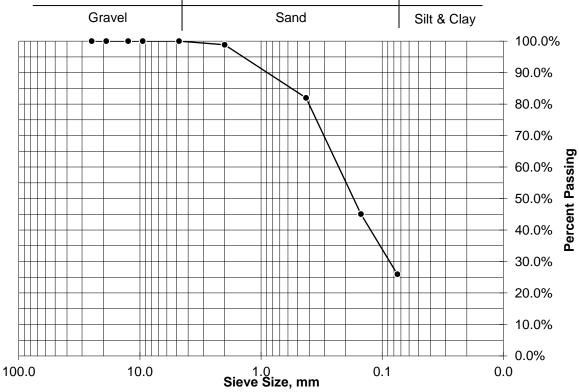
Plastic Limit

Pan ID	4	313
Pan Weight	8.98	9.14
Pan + Soil (wet)	19.49	21.27
Pan + Soil (dry)	17.28	18.71
Moisture Content	26.6%	26.7%

Plastic Limit 27
Plastic Index 11

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-21 Sample Depth 6'-8'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.06	1.1%	2.00	98.9%
No. 40	15.90	16.9%	0.425	82.0%
No. 100	34.75	36.9%	0.15	45.1%
No. 200	18.02	19.1%	0.075	26.0%
Pan	0.78	0.8%		
Total	70.51	74.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Sample ID DAA-22 Sample Depth 6'-8' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 123

Pan Wt 124.43 grams
Pan + Soil (wet) 233.34 grams

Pan + Soil (dry) 215.67 grams

Natural Moisture Content 19.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 188.44 grams

Percent Passing No. 200 Sieve 29.8%

Pan + Soil retained on No. 4 sieve

(dry) 124.97 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

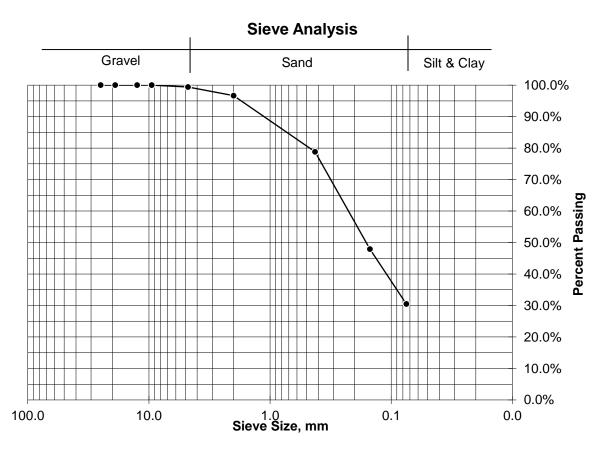
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
51		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-22 Sample Depth 6'-8'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.54	0.6%	4.75	99.4%
No. 10	2.48	2.7%	2.00	96.7%
No. 40	16.28	17.8%	0.425	78.8%
No. 100	28.23	30.9%	0.15	47.9%
No. 200	15.90	17.4%	0.075	30.5%
Pan	0.57	0.6%		
Total	64.00	70.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-22 Sample Depth 10'-12' Visual Sample Description Brown Silty SAND

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 122

Pan Wt 123.30 grams
Pan + Soil (wet) 225.80 grams
Pan + Soil (dry) 208.05 grams

Natural Moisture Content 20.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 196.59 grams

Percent Passing No. 200 Sieve 13.5%

Pan + Soil retained on No. 4 sieve

(dry) 123.30 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

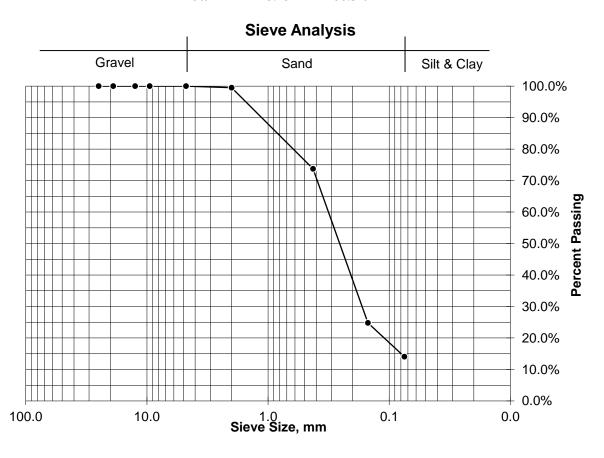
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-22 Sample Depth 10'-12'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.43	0.5%	2.00	99.5%
No. 40	21.84	25.8%	0.425	73.7%
No. 100	41.47	48.9%	0.15	24.8%
No. 200	9.09	10.7%	0.075	14.1%
Pan	0.46	0.5%		
Total	73.29	86.5%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Sample ID DAA-22 Sample Depth 35'-37'

Visual Sample Description Brownish-Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 36

Pan Wt 193.74 grams Pan + Soil (wet) 296.82 grams

Pan + Soil (dry) 289.12 grams

Natural Moisture Content 8.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 274.32 grams

Percent Passing No. 200 Sieve 15.5%

Pan + Soil retained on No. 4 sieve

(dry) 193.97 grams

Percent Passing No. 4 Sieve 99.8%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

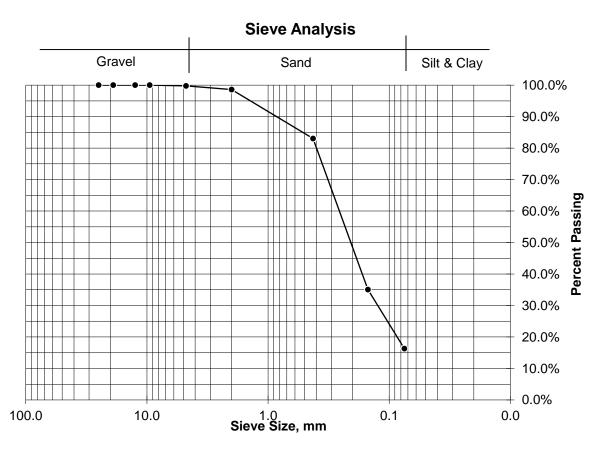
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-22 Sample Depth 35'-37'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.23	0.2%	4.75	99.8%
No. 10	1.11	1.2%	2.00	98.6%
No. 40	14.82	15.5%	0.425	83.1%
No. 100	45.77	48.0%	0.15	35.1%
No. 200	17.89	18.8%	0.075	16.3%
Pan	0.76	0.8%		
Total	80.58	84.5%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019

Date Tested: 3/22/2019

Date Tested: 4/15/2019

Sample ID DAA-23 Sample Depth 14'-16'

Visual Sample Description Reddish-brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 24

Pan Wt 186.13 grams
Pan + Soil (wet) 290.13 grams

Pan + Soil (dry) 271.17 grams
Natural Moisture Content 22.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 245.63 grams

Percent Passing No. 200 Sieve 30.0%

Pan + Soil retained on No. 4 sieve

(dry) 186.13 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

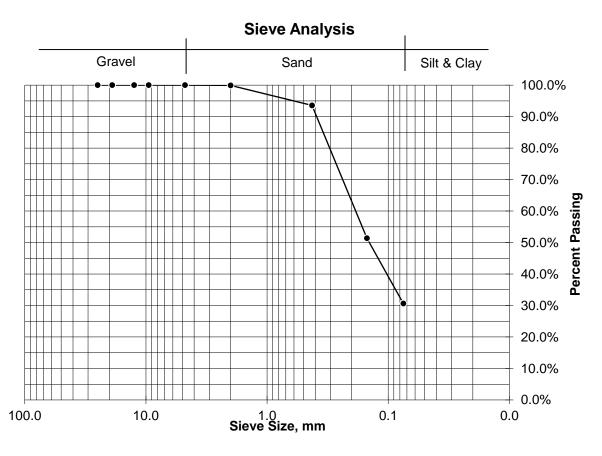
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
DI = =4: = 1:===:4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-23 Sample Depth 14'-16'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.09	0.1%	2.00	99.9%
No. 40	5.37	6.3%	0.425	93.6%
No. 100	35.87	42.2%	0.15	51.4%
No. 200	17.67	20.8%	0.075	30.6%
Pan	0.50	0.6%		
Total	59.50	70.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-23 Sample Depth 26'-28'

Visual Sample Description Brownish-Gray Silty SAND

Draper Aden Associates Engineering - Surveying - Environmental Services 1030 Willman Ava. Sto. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 11

Pan Wt 187.47 grams Pan + Soil (wet) 305.65 grams

Pan + Soil (dry) 288.73 grams

Natural Moisture Content 16.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 272.53 grams

Percent Passing No. 200 Sieve 16.0%

Pan + Soil retained on No. 4 sieve

(dry) 187.47 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

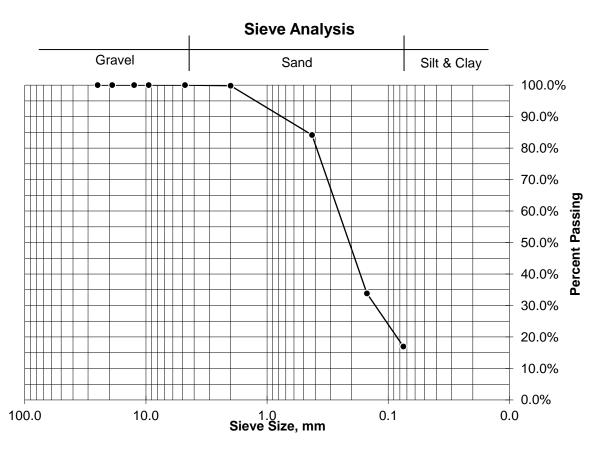
Liquid Limit Liquid Limit

Plastic Limit

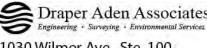
Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW


Sample ID DAA-23 Sample Depth 26'-28'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.20	0.2%	2.00	99.8%
No. 40	15.84	15.6%	0.425	84.2%
No. 100	50.95	50.3%	0.15	33.8%
No. 200	17.08	16.9%	0.075	17.0%
Pan	0.95	0.9%		
Total	85.02	84.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-23 Sample Depth 28'-29.5' Visual Sample Description Gray Silty SAND Sample Recieved: 4/26/2019 Date Tested: 4/26/2019

Date Tested: 5/1/2019

Natural Moisture Content: ASTM D 2216

Pan ID 11
Pan Wt 187.50 grams
Pan + Soil (wet) 428.90 grams

Pan + Soil (dry) 394.65 grams

Natural Moisture Content 16.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 355.60 grams

Percent Passing No. 200 Sieve 18.9%

Pan + Soil retained on No. 4 sieve

(drv) 188.82 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
Liquid Limit		

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Plastic Limit Plastic Index

Liquid Limit

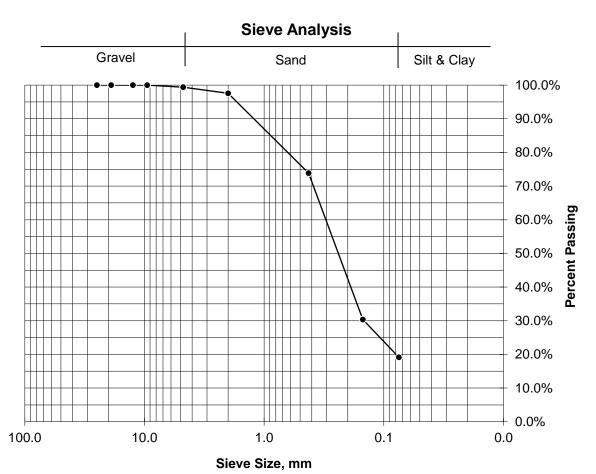
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-23 Sample Depth 28'-29.5'

Mechanical Sieve Analysis: ASTM D 422


Sieve Size	Weight Retained	Percent Retained	Sieve Size, mm	Date Tested: Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	1.32	0.6%	4.75	99.4%
No. 10	3.67	1.8%	2.0	97.6%
No. 40	49.17	23.7%	0.425	73.9%
No. 100	90.09	43.5%	0.15	30.4%
No. 200	23.21	11.2%	0.075	19.2%
Pan	0.60	0.3%		
Total	168.06	81.1%		

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Permeability Calculations

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100
Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/26/2019

Date Tested: 4/26/2019

Sample ID: DAA-23 Sample Depth: 28'-29.5'

Permeability Method: ASTM D5084

Sample Length, in: 3.71 Sample Diameter, in: 2.86

Sample Condition: Undisturbed

Dry Density

 187.50 grams
 Soil (wet)
 797.58 grams

 428.90 grams
 Wet Density
 127.4 pcf

 394.65 grams
 Dry Density
 109.4 pcf

Moisture Content 16.5%

Moisture Content

Pan Wt

Pan + Soil (wet)

Pan + Soil (dry)

Test Conditions Initial Data

Backpressure, psi 40.0 **Assumed Specific Gravity** 2.65 Cell Pressure, psi 50.0 **Percent Voids** 33.9% Influent Buret Area, cm^2 0.03142 Actual Volume of Voids 132.3 ml Effluent Buret Area, cm^2 0.76712 33.9% Porosity Effective Stress, psi 10.0 Saturation 85.6%

Pearment Liquid Temp.(°C): Date Tested:

Permeability Trials Flow

Time Influent Influent Effluent Effluent Deviation Gradient Permeabilty, k min Head, cm Flow, cm^3 Head, cm Flow, cm^3 Ratio mm-Hg cm/sec

Failed, unable to get reading

Average Permeability #DIV/0! cm/sec Corrected for 20°C

Final Data

Assumed Specific Gravity 2.65 Final Weight of Sample 836.42 grams Final Moisture Content Final Sample Length, in: 22.2% 3.67 Percent Voids 33.6% Final Sample Diameter, in: 2.87 Actual Volume of Voids 130.7 ml Wet Density 134.2 pcf 109.8 pcf Porosity 33.6% Dry Density

Saturation 100.0%

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 3/26/2019

Sample ID DAA-25 Sample Depth 6'-8' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 25

Pan Wt 194.03 grams Pan + Soil (wet) 296.42 grams

Pan + Soil (dry) 267.47 grams

Natural Moisture Content 39.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 237.91 grams

Percent Passing No. 200 Sieve 40.3%

Pan + Soil retained on No. 4 sieve

(dry) 194.52 grams

Percent Passing No. 4 Sieve 99.3%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	24	35
Pan ID	169	201	96
Pan Wt	27.18	27.71	24.87
Pan + Soil (wet)	39.50	38.36	35.41
Pan + Soil (dry)	34.64	34.32	31.60
Moisture Content	65.1%	61.1%	56.6%
Liquid Limit	63	61	59

Plastic Limit

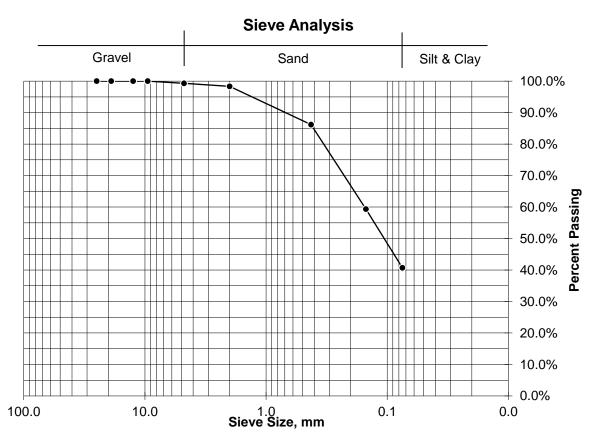
Pan ID	73	74
Pan Weight	4.26	4.28
Pan + Soil (wet)	14.40	16.68
Pan + Soil (dry)	11.59	13.24
Moisture Content	38.3%	38.4%

61

Plastic Limit 38
Plastic Index 23

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-25

Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.49	0.7%	4.75	99.3%
No. 10	0.71	1.0%	2.00	98.4%
No. 40	8.92	12.1%	0.425	86.2%
No. 100	19.72	26.9%	0.15	59.4%
No. 200	13.69	18.6%	0.075	40.7%
Pan	0.35	0.5%		
Total	43.88	59.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 3/19/2019 Date Tested: 3/22/2019

Date Tested: 4/15/2019

Sample ID DAA-25 Sample Depth 16'-18' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 110

Pan Wt 122.63 grams Pan + Soil (wet) 231.01 grams

Pan + Soil (dry) 210.04 grams

Natural Moisture Content 24.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 182.18 grams

Percent Passing No. 200 Sieve 31.9%

Pan + Soil retained on No. 4 sieve

(dry) 128.16 grams

Percent Passing No. 4 Sieve 93.7%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	26	32
Pan ID	1	64	96
Pan Wt	11.24	11.04	24.78
Pan + Soil (wet)	29.45	27.98	31.00
Pan + Soil (dry)	22.11	21.51	28.71
Moisture Content	67.6%	61.8%	58.2%
Liquid Limit	64	62	60

Plastic Limit

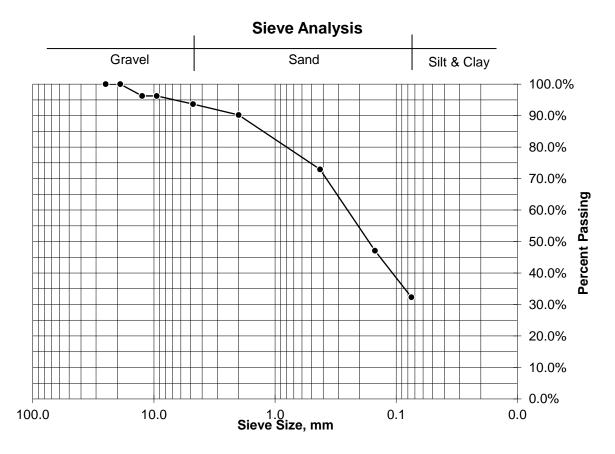
-		
Pan ID	78	81
Pan Weight	4.24	4.33
Pan + Soil (wet)	15.31	15.09
Pan + Soil (dry)	12.28	12.10
Moisture Content	37.7%	38.5%

62

Plastic Limit 38
Plastic Index 24

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample Depth 16'-18'

Sample ID DAA-25

Draper Aden Associates Engineering · Surveying · Environmental Services.
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Mechanical Sieve Analysis: ASTM D 422						
Sieve	Weight	Percent	Sieve	Percent		
Size	Retained	Retained	Size, mm	Passing		
1"	0.00	0.0%	25.0	100.0%		
3/4"	0.00	0.0%	19.0	100.0%		
1/2"	3.27	3.7%	12.5	96.3%		
3/8"	0.00	0.0%	9.50	96.3%		
No. 4	2.26	2.6%	4.75	93.7%		
No. 10	3.03	3.5%	2.00	90.2%		
No. 40	15.10	17.3%	0.425	72.9%		
No. 100	22.59	25.8%	0.15	47.1%		
No. 200	12.89	14.7%	0.075	32.3%		
Pan	0.40	0.5%				
Total	59.54	68.1%				

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-26 Sample Depth 2'-4'

Visual Sample Description Light Reddish-brown Elastic SILT

Sample Received: 4/17/2019 Date Tested: 4/22/2019

Date Tested: 5/29/2019

Natural Moisture Content: ASTM D 2216

Pan ID 9

Pan Wt 189.24 grams Pan + Soil (wet) 293.77 grams

Pan + Soil (dry) 263.10 grams

Natural Moisture Content 41.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 193.83 grams

Percent Passing No. 200 Sieve 93.8%

Pan + Soil retained on No. 4 sieve

(dry) 189.24 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	27	34
Pan ID	61	63	10
Pan Wt	10.96	10.86	11.26
Pan + Soil (wet)	17.72	20.86	19.33
Pan + Soil (dry)	14.59	16.48	15.90
Moisture Content	86.2%	77.9%	73.9%
Liquid Limit	81	79	77
Liquid Limit	<i>7</i> 9		

Plastic Limit

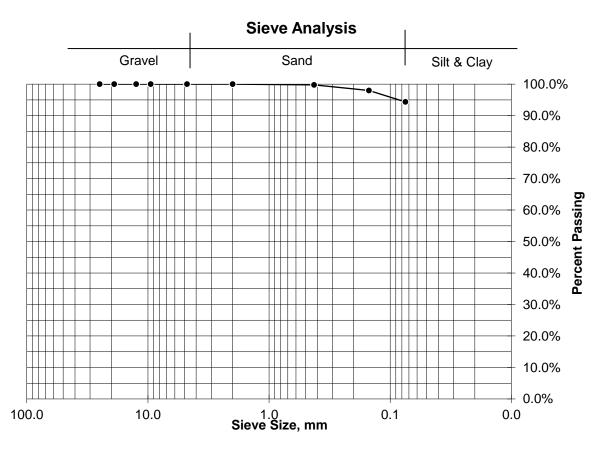
Pan ID	74	22
Pan Weight	4.29	4.31
Pan + Soil (wet)	14.49	14.34
Pan + Soil (dry)	11.73	11.62
Moisture Content	37.1%	37.2%

Plastic Limit 37
Plastic Index 42

USCS Classification: ASTM D 2487

Group Symbol MH
Group Name Elastic SILT

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-26

Sample Depth 2'-4'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	0.18	0.2%	0.425	99.8%
No. 100	1.31	1.8%	0.15	98.0%
No. 200	2.68	3.6%	0.075	94.4%
Pan	0.41	0.6%		
Total	4.58	6.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/17/2019

Date Tested: 4/25/2019

Sample ID DAA-26 Sample Depth 4'-6' Visual Sample Description Light Brown Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID 118

Pan Wt 122.25 grams Pan + Soil (wet) 224.18 grams

Pan + Soil (dry) 197.03 grams

Natural Moisture Content 36.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 132.14 grams

Percent Passing No. 200 Sieve 86.8%

Pan + Soil retained on No. 4 sieve

(dry) 122.25 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	28	30
Pan ID	1	96	64
Pan Wt	11.23	24.79	11.03
Pan + Soil (wet)	22.55	33.44	40.61
Pan + Soil (dry)	18.07	30.20	29.81
Moisture Content	65.5%	59.9%	57.5%
Liquid Limit	63	61	59
Liquid Limit	61		

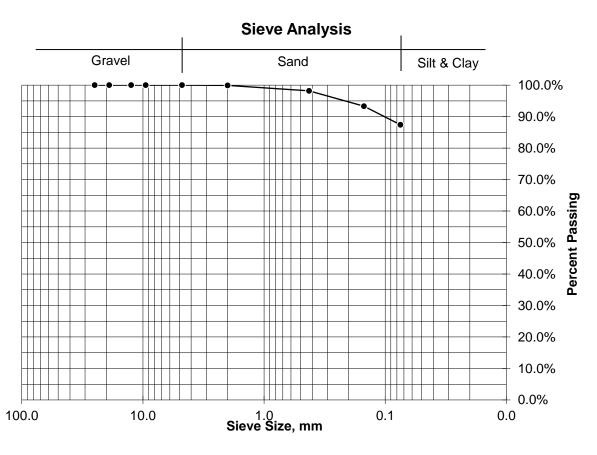
Plastic Limit

Pan ID	352	353
Pan Weight	9.06	9.10
Pan + Soil (wet)	19.61	19.98
Pan + Soil (dry)	16.71	17.02
Moisture Content	37.9%	37.4%

Plastic Limit 38
Plastic Index 23

USCS Classification: ASTM D 2487

Group Symbol MH
Group Name Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 4'-6'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.06	0.1%	2.00	99.9%
No. 40	1.30	1.7%	0.425	98.2%
No. 100	3.65	4.9%	0.15	93.3%
No. 200	4.39	5.9%	0.075	87.4%
Pan	0.45	0.6%		
Total	9.85	13.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/22/2019

Date Tested: 4/22/2019

Sample ID DAA-26 Sample Depth 8'-10'

Visual Sample Description Light Brown SILT with Sand

Natural Moisture Content: ASTM D 2216

Pan ID 6

Pan Wt 195.32 grams Pan + Soil (wet) 307.70 grams Pan + Soil (dry) 277.87 grams

Natural Moisture Content 36.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 212.08 grams

Percent Passing No. 200 Sieve 79.7%

Pan + Soil retained on No. 4 sieve

(dry) 195.32 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

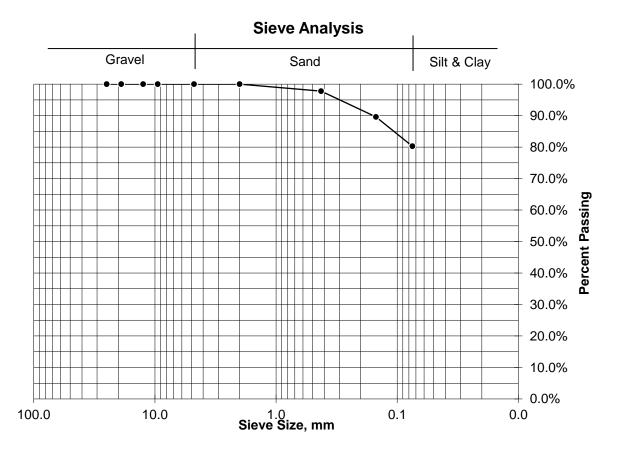
Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
51		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

Group Symbol ML

Group Name SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 8'-10'

/313. A3	1 101 D 422			
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	1.82	2.2%	0.425	97.8%
No. 100	6.75	8.2%	0.15	89.6%
No. 200	7.71	9.3%	0.075	80.3%
Pan	0.48	0.6%		
Total	16.76	20.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-26 Sample Depth 18'-20'

Visual Sample Description Light Brown Elastic SILT with Sand

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 5/1/2019

Natural Moisture Content: ASTM D 2216

Pan ID 26

Pan Wt 194.57 grams

Pan + Soil (wet) 323.67 grams Pan + Soil (dry) 282.99 grams

Natural Moisture Content 46.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 220.82 grams

Percent Passing No. 200 Sieve 70.3%

Pan + Soil retained on No. 4 sieve

(dry) 194.75 grams

Percent Passing No. 4 Sieve 99.8%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	23	31
Pan ID	107	64	70
Pan Wt	25.10	10.98	10.99
Pan + Soil (wet)	39.42	27.99	39.40
Pan + Soil (dry)	33.54	21.32	28.70
Moisture Content	69.7%	64.5%	60.4%
Liquid Limit	66	64	62

Liquid Limit 64

Plastic Limit

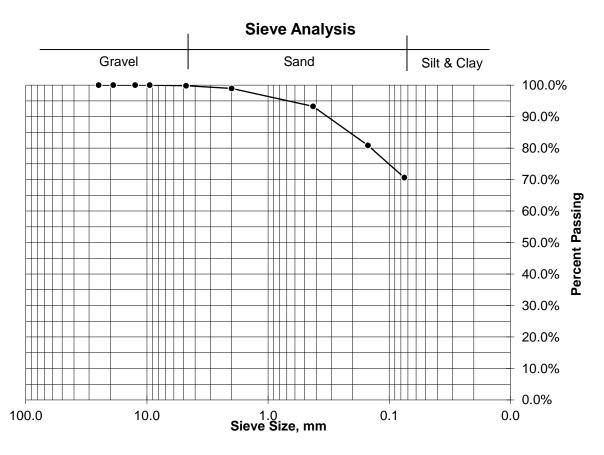
Pan ID	354	4
Pan Weight	9.17	9.06
Pan + Soil (wet)	20.46	19.76
Pan + Soil (dry)	16.63	16.11
Moisture Content	51.3%	51.8%

Plastic Limit 52
Plastic Index 12

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 18'-20'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.18	0.2%	4.75	99.8%
No. 10	0.74	0.8%	2.00	99.0%
No. 40	5.03	5.7%	0.425	93.3%
No. 100	10.99	12.4%	0.15	80.8%
No. 200	9.04	10.2%	0.075	70.6%
Pan	0.27	0.3%		
Total	26.25	29.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 4/26/2019

Sample ID DAA-26 Sample Depth 20'-22' Visual Sample Description Light Brown Elastic SILT

1 1 3

Natural Moisture Content: ASTM D 2216

Pan ID 124

Pan Wt 124.38 grams Pan + Soil (wet) 252.16 grams

Pan + Soil (dry) 204.84 grams

Natural Moisture Content 58.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 133.77 grams

Percent Passing No. 200 Sieve 88.3%

Pan + Soil retained on No. 4 sieve

(dry) 124.38 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	21	32
Pan ID	91	62	108
Pan Wt	24.52	10.87	33.14
Pan + Soil (wet)	36.06	27.36	41.26
Pan + Soil (dry)	31.22	20.68	38.11
Moisture Content	72.3%	68.1%	63.3%
Liquid Limit	69	67	65

Plastic Limit

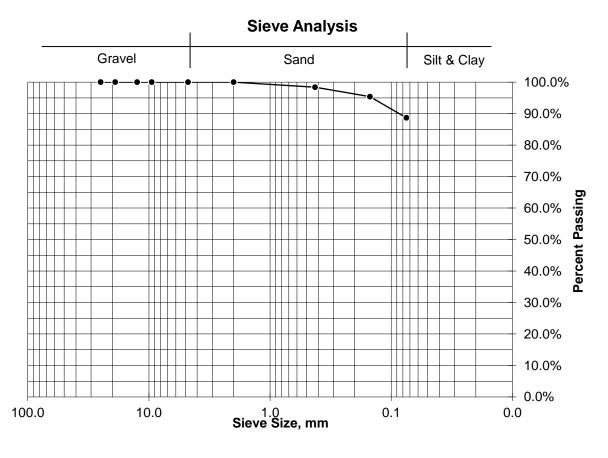
_		
Pan ID	313	352
Pan Weight	9.14	9.05
Pan + Soil (wet)	23.99	19.79
Pan + Soil (dry)	18.74	15.99
Moisture Content	54.7%	54.8%

67

Plastic Limit 55
Plastic Index 12

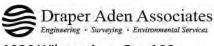
USCS Classification: ASTM D 2487

Group Symbol MH
Group Name Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 20'-22'



,				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	1.31	1.6%	0.425	98.4%
No. 100	2.40	3.0%	0.15	95.4%
No. 200	5.40	6.7%	0.075	88.7%
Pan	0.28	0.3%		
Total	9.39	11.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Date Tested: 4/25/2019

Army Corps of Engineers Certified Laboratory

Sample ID DAA-26 Sample Depth 22'-24'

Visual Sample Description Light Brown Elastic SILT with Sand

Sample Received: 4/11/2019
Date Tested: 4/17/2019

Natural Moisture Content: ASTM D 2216

Pan ID 100

Pan Wt 123.77 grams Pan + Soil (wet) 224.48 grams

Pan + Soil (dry) 186.94 grams

Natural Moisture Content 59.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 135.86 grams

Percent Passing No. 200 Sieve 80.9%

Pan + Soil retained on No. 4 sieve

(dry) 123.77 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	26	33
Pan ID	98	109	6
Pan Wt	30.31	25.03	11.17
Pan + Soil (wet)	40.96	38.05	28.39
Pan + Soil (dry)	36.70	33.10	22.07
Moisture Content	66.7%	61.3%	58.0%
Liquid Limit	64	62	60

Plastic Limit

Pan ID	2	4
Pan Weight	9.04	9.06
Pan + Soil (wet)	19.64	21.14
Pan + Soil (dry)	16.30	17.36
Moisture Content	46.0%	45.5%

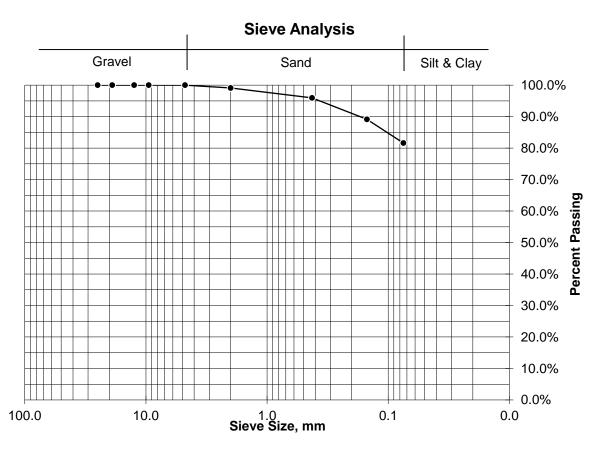
62

Plastic Limit 46
Plastic Index 16

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Elastic SILT with Sand


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 22'-24'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.57	0.9%	2.00	99.1%
No. 40	1.99	3.2%	0.425	95.9%
No. 100	4.31	6.8%	0.15	89.1%
No. 200	4.74	7.5%	0.075	81.6%
Pan	0.47	0.7%		
Total	12.08	19.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 4/26/2019

Sample ID DAA-26 Sample Depth 24'-26' Visual Sample Description Light Brown Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID 37

Pan Wt 193.60 grams Pan + Soil (wet) 302.92 grams

Pan + Soil (dry) 261.86 grams

Natural Moisture Content 60.2%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 202.27 grams

Percent Passing No. 200 Sieve 87.3%

Pan + Soil retained on No. 4 sieve

(dry) 193.60 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	21	31
Pan ID	6	9	93
Pan Wt	11.18	11.11	30.11
Pan + Soil (wet)	32.28	28.61	46.24
Pan + Soil (dry)	23.24	21.37	39.87
Moisture Content	74.9%	70.6%	65.3%
Liquid Limit	71	69	67

Liquid Limit 69

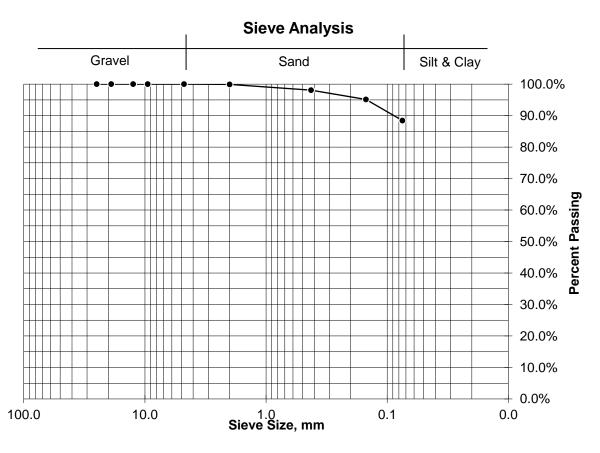
Plastic Limit

Pan ID	317	353
Pan Weight	8.08	9.13
Pan + Soil (wet)	18.44	19.36
Pan + Soil (dry)	14.87	15.84
Moisture Content	52.6%	52.5%

Plastic Limit 53
Plastic Index 16

USCS Classification: ASTM D 2487

Group Symbol MH
Group Name Elastic SILT


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-26 Sample Depth 24'-26'

•				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.06	0.1%	2.00	99.9%
No. 40	1.26	1.8%	0.425	98.1%
No. 100	2.01	2.9%	0.15	95.1%
No. 200	4.55	6.7%	0.075	88.5%
Pan	0.72	1.1%		
Total	8.60	12.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying - Environmental Services

1030 Wilmer Ave Ste 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Date Tested: 6/3/2019

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/22/2019

Sample ID DAA-26 Sample Depth 28'-30'

Visual Sample Description Light Brown Sandy Elastic SILT

Natural Moisture Content: ASTM D 2216

Pan ID 11

Pan Wt 187.45 grams Pan + Soil (wet) 294.74 grams

Pan + Soil (dry) 258.02 grams

Natural Moisture Content 52.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 214.44 grams

Percent Passing No. 200 Sieve 61.8%

Pan + Soil retained on No. 4 sieve

(dry) 187.45 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	20	24	32
Pan ID	6	63	69
Pan Wt	11.20	10.83	10.96
Pan + Soil (wet)	21.84	20.02	19.57
Pan + Soil (dry)	18.09	16.91	16.78
Moisture Content	54.5%	51.2%	47.9%
Liquid Limit	53	51	49
Liquid Limit	51		

Plastic Limit

_		
Pan ID	33	52
Pan Weight	2.40	2.39
Pan + Soil (wet)	9.45	9.69
Pan + Soil (dry)	7.53	7.72
Moisture Content	37.4%	37.0%

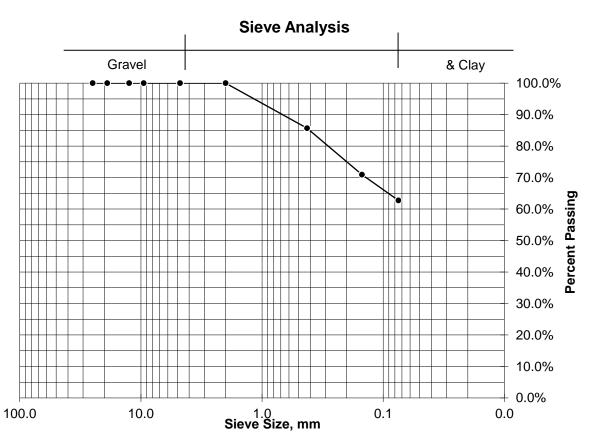
Plastic Limit 37
Plastic Index 14

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Sandy Elastic SILT

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-26

Sample Depth 28'-30'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	10.11	14.3%	0.425	85.7%
No. 100	10.38	14.7%	0.15	71.0%
No. 200	5.79	8.2%	0.075	62.8%
Pan	0.68	1.0%		
Total	26.96	38.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/22/2019

Date Tested: 5/1/2019

Sample ID DAA-26 Sample Depth 34'-36' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 42

Pan Wt 192.29 grams Pan + Soil (wet) 306.28 grams

Pan + Soil (dry) 282.57 grams

Natural Moisture Content 26.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 253.65 grams

Percent Passing No. 200 Sieve 32.0%

Pan + Soil retained on No. 4 sieve

(dry) 205.44 grams

Percent Passing No. 4 Sieve 85.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	21	33
Pan ID	91	65	98
Pan Wt	24.52	10.99	30.34
Pan + Soil (wet)	33.03	28.80	33.17
Pan + Soil (dry)	29.87	22.44	32.22
Moisture Content	59.1%	55.5%	50.5%
Liquid Limit	56	54	52
Liquid Limit	54		

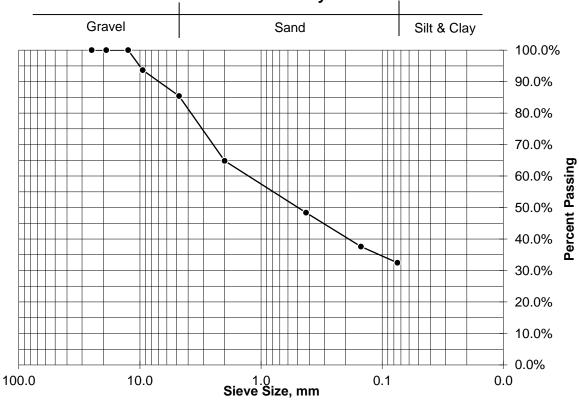
Plastic Limit

Pan ID	2	313
Pan Weight	9.02	9.14
Pan + Soil (wet)	20.85	20.02
Pan + Soil (dry)	17.34	16.79
Moisture Content	42.2%	42.2%

Plastic Limit 42
Plastic Index 12

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-26 Sample Depth 34'-36'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	5.73	6.3%	9.50	93.7%
No. 4	7.42	8.2%	4.75	85.4%
No. 10	18.59	20.6%	2.00	64.8%
No. 40	14.88	16.5%	0.425	48.4%
No. 100	9.70	10.7%	0.15	37.6%
No. 200	4.65	5.2%	0.075	32.5%
Pan	0.38	0.4%		
Total	61.35	68.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-27 Sample Depth 2'-4'

Visual Sample Description Light Brown Silty SAND

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/22/2019

Date Tested: 4/22/2019

Natural Moisture Content: ASTM D 2216

Pan ID 21

Pan Wt 193.79 grams Pan + Soil (wet) 357.07 grams

Pan + Soil (dry) 345.85 grams

Natural Moisture Content 7.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 310.60 grams

Percent Passing No. 200 Sieve 23.2%

Pan + Soil retained on No. 4 sieve

(dry) 193.79 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

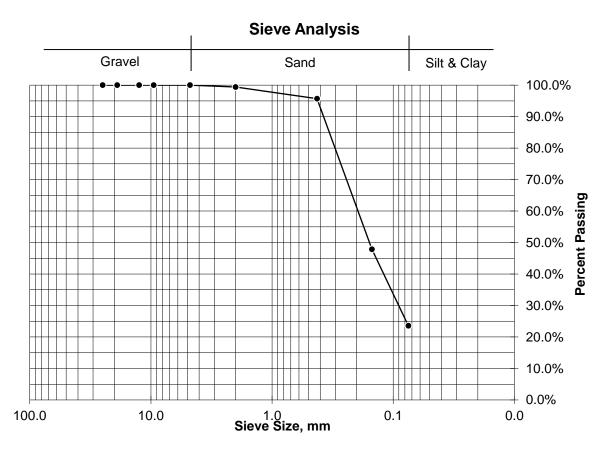
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-27 Sample Depth 2'-4'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.93	0.6%	2.00	99.4%
No. 40	5.61	3.7%	0.425	95.7%
No. 100	72.74	47.8%	0.15	47.9%
No. 200	36.94	24.3%	0.075	23.6%
Pan	0.59	0.4%		
Total	116.81	76.8%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-27

Sample Depth 14'-16'

Visual Sample Description Light Brownish-gray Silty SAND

Draper Aden Associates

Engineering - Surveying - Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019

Date Tested: 4/22/2019

Date Tested: 4/23/2019

Natural Moisture Content: ASTM D 2216

Pan ID 29

Pan Wt 191.85 grams

Pan + Soil (wet) 349.47 grams Pan + Soil (dry) 332.37 grams

Natural Moisture Content 12.2%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 282.63 grams

Percent Passing No. 200 Sieve 35.4%

Pan + Soil retained on No. 4 sieve

(dry) 192.16 grams

Percent Passing No. 4 Sieve 99.8%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit

Liquid Limit

Plastic Limit

Pan ID		
Pan Weight No	on-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Plastic Limit
Plastic Index

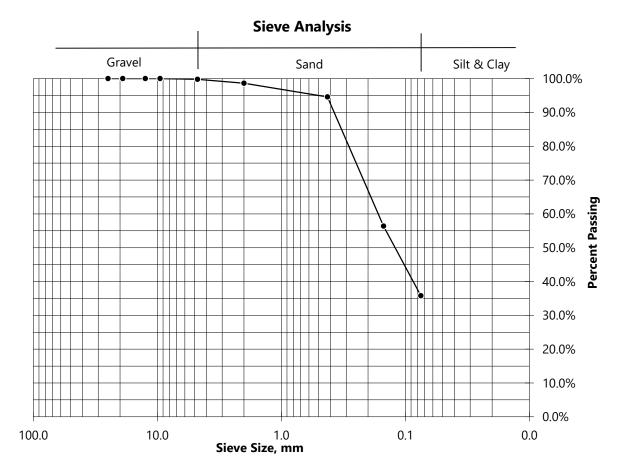
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill

DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-27 Sample Depth 14'-16'


Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.31	0.2%	4.75	99.8%
No. 10	1.64	1.2%	2.00	98.6%
No. 40	5.69	4.0%	0.425	94.6%
No. 100	53.68	38.2%	0.15	56.4%
No. 200	28.91	20.6%	0.075	35.8%
Pan	0.55	0.4%		
Total	90.78	64.6%		

Draper Aden Associates

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/22/2019

Date Tested: 4/22/2019

Sample ID DAA-27 Sample Depth 16'-18' Visual Sample Description Light Gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 20

Pan Wt 189.95 grams
Pan + Soil (wet) 373.46 grams
Pan + Soil (dry) 360.71 grams

Natural Moisture Content 7.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 316.54 grams

Percent Passing No. 200 Sieve 25.9%

Pan + Soil retained on No. 4 sieve

(dry) 191.06 grams

Percent Passing No. 4 Sieve 99.3%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

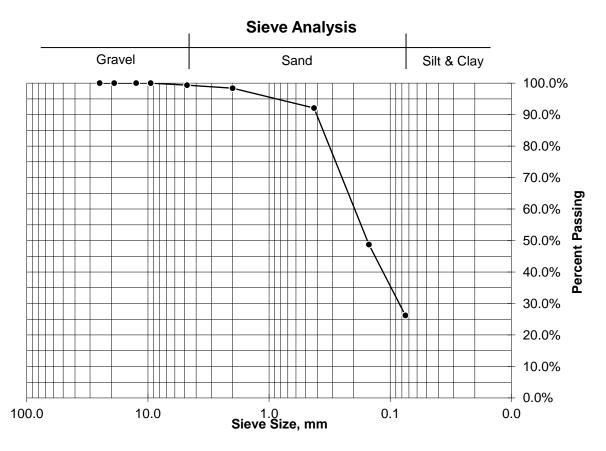
Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-27

Sample Depth 16'-18'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	1.11	0.7%	4.75	99.3%
No. 10	1.66	1.0%	2.00	98.4%
No. 40	10.74	6.3%	0.425	92.1%
No. 100	74.06	43.4%	0.15	48.7%
No. 200	38.39	22.5%	0.075	26.2%
Pan	0.58	0.3%		
Total	126.54	74.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 4/11/2019 Date Tested: 4/17/2019

Date Tested: 4/25/2019

Sample ID DAA-28 Sample Depth 2'-4'

Visual Sample Description Dark Brown Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 105

Pan Wt 124.05 grams Pan + Soil (wet) 248.62 grams

Pan + Soil (dry) 223.97 grams

Natural Moisture Content 24.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 181.28 grams

Percent Passing No. 200 Sieve 42.7%

Pan + Soil retained on No. 4 sieve

(dry) 124.05 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	27	31
Pan ID	103	201	2000
Pan Wt	27.42	27.63	25.69
Pan + Soil (wet)	44.21	43.99	36.60
Pan + Soil (dry)	39.25	39.51	33.77
Moisture Content	41.9%	37.7%	35.1%
Liquid Limit	40	38	36
Liquid Limit	38		

Plastic Limit

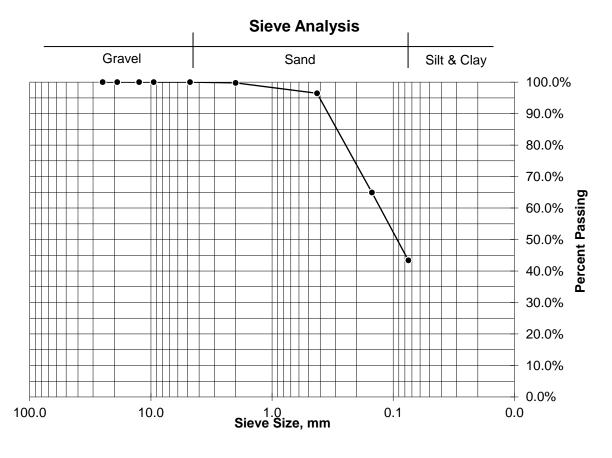
Pan ID	315	354
Pan Weight	9.16	9.14
Pan + Soil (wet)	19.68	20.18
Pan + Soil (dry)	17.81	18.20
Moisture Content	21.6%	21.9%

Plastic Limit 22
Plastic Index 16

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-28 Sample Depth 2'-4'

/				
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.25	0.3%	2.00	99.7%
No. 40	3.30	3.3%	0.425	96.4%
No. 100	31.45	31.5%	0.15	65.0%
No. 200	21.57	21.6%	0.075	43.4%
Pan	0.65	0.7%		
Total	57.22	57.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying - Environmental Services

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-28 Sample Depth 4'-6'

Visual Sample Description Light Reddish-brown Silty SAND

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 6/4/2019

Natural Moisture Content: ASTM D 2216

Pan ID 110

Pan Wt 122.64 grams

Pan + Soil (wet) 248.23 grams

Pan + Soil (dry) 225.98 grams

Natural Moisture Content 21.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 191.50 grams

Percent Passing No. 200 Sieve 33.4%

Pan + Soil retained on No. 4 sieve

(dry) 122.64 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	23	35
Pan ID	98	103	109
Pan Wt	30.34	27.36	25.00
Pan + Soil (wet)	44.45	41.12	36.79
Pan + Soil (dry)	39.35	36.38	32.95
Moisture Content	56.6%	52.5%	48.3%
Liquid Limit	54	52	50
Liquid Limit	52		

Plastic Limit

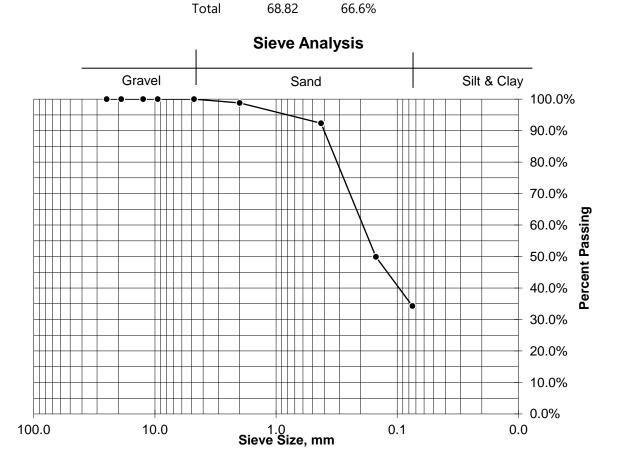
-		
Pan ID	78	315
Pan Weight	4.24	9.16
Pan + Soil (wet)	19.06	25.26
Pan + Soil (dry)	15.70	21.60
Moisture Content	29.3%	29.4%

Plastic Limit 29
Plastic Index 23

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW


Sample ID DAA-28 Sample Depth 4'-6'

Sample Depth 4'-6'

Mechanical Sieve Analysis: ASTM D 422

SIS: AS	FM D 422			
Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.24	1.2%	2.00	98.8%
No. 40	6.69	6.5%	0.425	92.3%
No. 100	43.84	42.4%	0.15	49.9%
No. 200	16.12	15.6%	0.075	34.3%
Pan	0.93	0.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/22/2019

Date Tested: 6/3/2019

Sample ID DAA-28
Sample Depth 10'-12'
Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 31

Pan Wt 192.97 grams Pan + Soil (wet) 325.95 grams

Pan + Soil (dry) 307.47 grams

Natural Moisture Content 16.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 272.63 grams

Percent Passing No. 200 Sieve 30.4%

Pan + Soil retained on No. 4 sieve

(dry) 192.97 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	20	25	34
Pan ID	92	103	109
Pan Wt	25.59	27.35	25.00
Pan + Soil (wet)	43.11	44.41	40.63
Pan + Soil (dry)	37.92	39.62	36.53
Moisture Content	42.1%	39.0%	35.5%
Liquid Limit	41	39	37

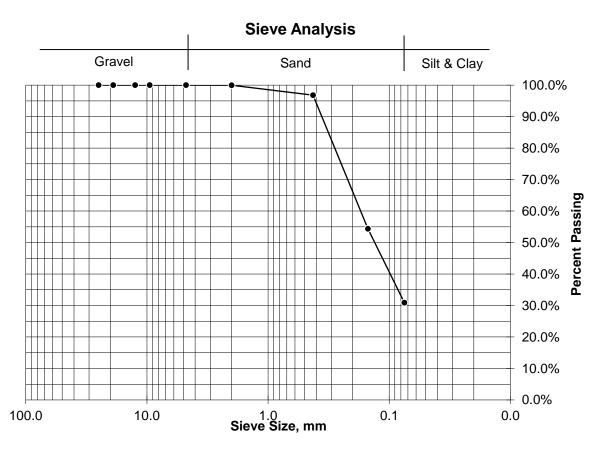
Plastic Limit

Pan ID	352	356
Pan Weight	9.08	9.11
Pan + Soil (wet)	24.74	27.56
Pan + Soil (dry)	21.17	23.41
Moisture Content	29.5%	29.0%

39

Plastic Limit 29 Plastic Index 10

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-28 Sample Depth 10'-12'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.03	0.0%	2.00	100.0%
No. 40	3.62	3.2%	0.425	96.8%
No. 100	48.60	42.4%	0.15	54.4%
No. 200	26.85	23.4%	0.075	30.9%
Pan	0.52	0.5%		
Total	79.62	69.5%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/22/2019

Date Tested: 4/22/2019

Sample ID DAA-28 Sample Depth 28'-30'

Visual Sample Description Brownish-gray Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 22

Pan Wt 188.96 grams
Pan + Soil (wet) 399.90 grams
Pan + Soil (dry) 382.04 grams

Natural Moisture Content 9.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 345.09 grams

Percent Passing No. 200 Sieve 19.1%

Pan + Soil retained on No. 4 sieve

(dry) 194.04 grams

Percent Passing No. 4 Sieve 97.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
_, , , , , , '		

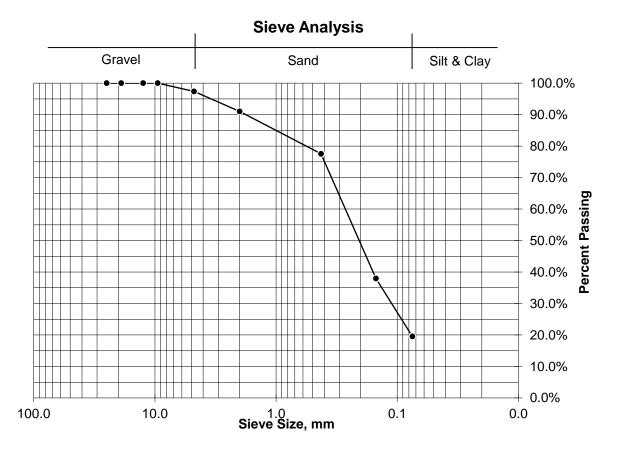
Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-28 Sample Depth 28'-30'


Mechanical Sieve Analysis: ASTM D 422					
Sieve	Weight	Percent	Sieve	Percent	
Size	Retained	Retained	Size, mm	Passing	
1"	0.00	0.0%	25.0	100.0%	
3/4"	0.00	0.0%	19.0	100.0%	
1/2"	0.00	0.0%	12.5	100.0%	
3/8"	0.00	0.0%	9.50	100.0%	
No. 4	5.08	2.6%	4.75	97.4%	
No. 10	12.25	6.3%	2.00	91.0%	
No. 40	26.00	13.5%	0.425	77.6%	
No. 100	76.44	39.6%	0.15	38.0%	
No. 200	35.58	18.4%	0.075	19.5%	
Pan	0.77	0.4%			
Total	156.12	80.9%			

Draper Aden Associates
Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Army Corps of Engineers Certified Laboratory

Richmond, VA 23227

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-28
Sample Depth 34'-36'
note Description Brown Silty SANI

Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 24

Pan Wt 186.15 grams
Pan + Soil (wet) 314.37 grams
Pan + Soil (dry) 294.31 grams

Natural Moisture Content 18.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 270.42 grams

Percent Passing No. 200 Sieve 22.1%

Pan + Soil retained on No. 4 sieve

(dry) 186.15 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487

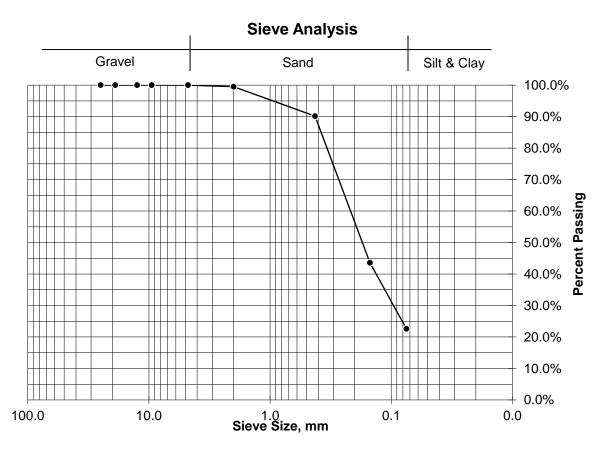
Group Symbol **SM**Group Name **Silty SAND**

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/11/2019 Date Tested: 4/17/2019

Date Tested: 4/24/2019


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-28 Sample Depth 34'-36'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.51	0.5%	2.00	99.5%
No. 40	10.16	9.4%	0.425	90.1%
No. 100	50.34	46.5%	0.15	43.6%
No. 200	22.68	21.0%	0.075	22.6%
Pan	0.56	0.5%		
Total	84.25	77.9%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 5/1/2019

Sample ID DAA-29 Sample Depth 2'-4'

Visual Sample Description Light Brown Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 21

Pan Wt 193.75 grams Pan + Soil (wet) 328.60 grams

Pan + Soil (dry) 306.68 grams

Natural Moisture Content 19.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 274.10 grams

Percent Passing No. 200 Sieve 28.8%

Pan + Soil retained on No. 4 sieve

(dry) 194.04 grams

Percent Passing No. 4 Sieve 99.7%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	27	32
Pan ID	93	62	96
Pan Wt	30.11	10.87	24.80
Pan + Soil (wet)	43.28	33.01	34.09
Pan + Soil (dry)	38.77	25.91	31.22
Moisture Content	52.0%	47.2%	44.6%
Liquid Limit	50	48	46

Liquid Limit 48

Plastic Limit

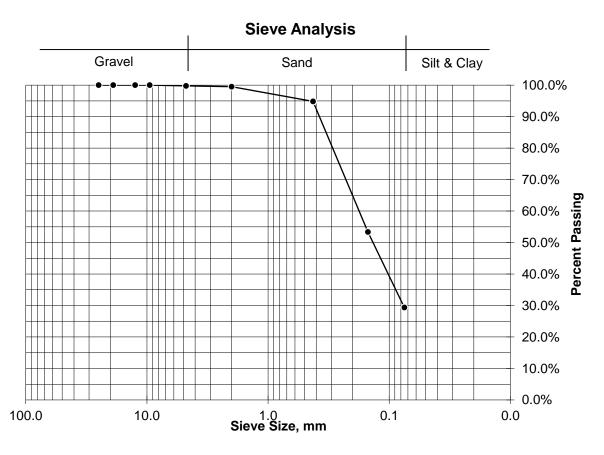
Pan ID	315	314
Pan Weight	9.15	9.13
Pan + Soil (wet)	19.24	19.81
Pan + Soil (dry)	17.26	17.80
Moisture Content	24.4%	23.2%

Plastic Limit 24
Plastic Index 24

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-29 Sample Depth 2'-4'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.29	0.3%	4.75	99.7%
No. 10	0.25	0.2%	2.00	99.5%
No. 40	5.30	4.7%	0.425	94.8%
No. 100	46.80	41.4%	0.15	53.4%
No. 200	27.13	24.0%	0.075	29.4%
Pan	0.57	0.5%		
Total	80.34	71.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates 1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 5/29/2019

Sample ID DAA-29 Sample Depth 6'-8'

Visual Sample Description Brown Silty SAND with Gravel

Natural Moisture Content: ASTM D 2216

Pan ID 41

Pan Wt 194.44 grams

Pan + Soil (wet) 318.66 grams

Pan + Soil (dry) 289.38 grams

Natural Moisture Content 30.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 267.58 grams

Percent Passing No. 200 Sieve 23.0%

Pan + Soil retained on No. 4 sieve

(dry) 220.35 grams

72.7% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	26	32
Pan ID	701	704	708
Pan Wt	11.42	11.39	11.55
Pan + Soil (wet)	15.93	15.99	15.82
Pan + Soil (dry)	14.11	14.22	14.23
Moisture Content	67.6%	62.5%	59.2%
Liquid Limit	65	63	61
Liquid Limit	63		

Plastic Limit

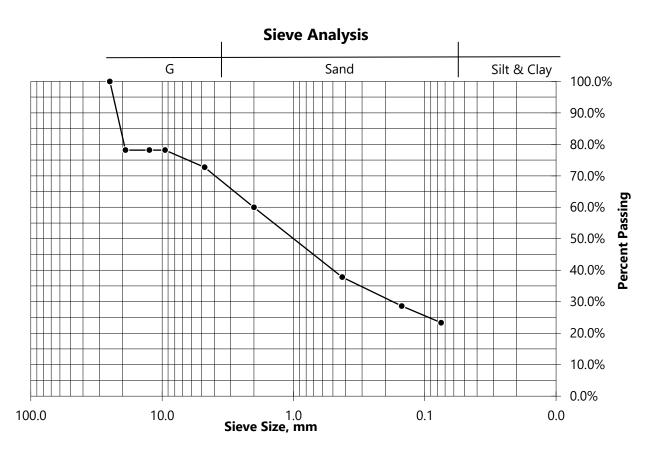
-		
Pan ID	58	359
Pan Weight	1.94	1.93
Pan + Soil (wet)	9.81	9.50
Pan + Soil (dry)	7.83	7.60
Moisture Content	33.6%	33.5%

Plastic Limit 34 Plastic Index 29

USCS Classification: ASTM D 2487

Group Symbol SM

Group Name Silty SAND with Gravel


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-29 Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	20.71	21.8%	19.0	78.2%
1/2"	0.00	0.0%	12.5	78.2%
3/8"	0.00	0.0%	9.50	78.2%
No. 4	5.20	5.5%	4.75	72.7%
No. 10	12.08	12.7%	2.00	60.0%
No. 40	21.04	22.2%	0.425	37.8%
No. 100	8.71	9.2%	0.15	28.6%
No. 200	5.05	5.3%	0.075	23.3%
Pan	0.35	0.4%		
Total	73.14	77.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019

Date Tested: 4/17/2019

Date Tested: 6/4/2019

Sample ID DAA-29 Sample Depth 12'-14' Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 23

Pan Wt 193.98 grams Pan + Soil (wet) 300.48 grams

Pan + Soil (dry) 271.97 grams

Natural Moisture Content 36.6%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 253.44 grams

Percent Passing No. 200 Sieve 23.8%

Pan + Soil retained on No. 4 sieve

(dry) 202.00 grams

Percent Passing No. 4 Sieve 89.7%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	26	32
Pan ID	98	103	109
Pan Wt	30.33	27.37	24.99
Pan + Soil (wet)	40.82	36.76	32.63
Pan + Soil (dry)	37.00	33.53	30.10
Moisture Content	57.2%	52.4%	49.5%
Liquid Limit	55	53	51
Liquid Limit	53		

Plastic Limit

Pan ID	313	314
Pan Weight	9.14	9.13
Pan + Soil (wet)	26.19	24.82
Pan + Soil (dry)	21.25	20.28
Moisture Content	40.8%	40.7%

Plastic Limit 41
Plastic Index 12

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-29 Sample Depth 12'-14'

Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	1.12	1.4%	9.50	98.6%
No. 4	6.90	8.8%	4.75	89.7%
No. 10	12.09	15.5%	2.00	74.2%
No. 40	19.04	24.4%	0.425	49.8%
No. 100	12.93	16.6%	0.15	33.2%
No. 200	7.07	9.1%	0.075	24.2%
Pan	0.31	0.4%		
Total	59.46	76.2%		

Sieve Analysis

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 4/29/2019

Sample ID DAA-29
Sample Depth 24'-26'

Visual Sample Description Reddish-Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 36

Pan Wt 193.75 grams Pan + Soil (wet) 349.90 grams

Pan + Soil (dry) 313.89 grams

Natural Moisture Content 30.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 268.96 grams

Percent Passing No. 200 Sieve 37.4%

Pan + Soil retained on No. 4 sieve

(dry) 193.75 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	26	32
Pan ID	70	72	65
Pan Wt	10.99	11.06	10.99
Pan + Soil (wet)	28.38	21.90	36.69
Pan + Soil (dry)	22.17	18.24	28.41
Moisture Content	55.5%	51.0%	47.6%
Liquid Limit	53	51	49

Liquid Limit 51

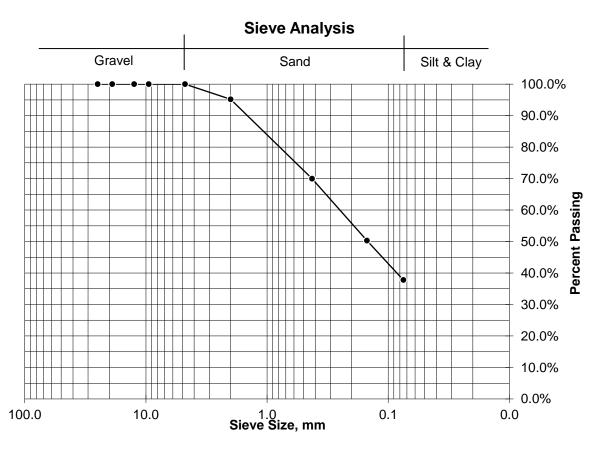
Plastic Limit

Pan ID	18	73
Pan Weight	4.33	4.22
Pan + Soil (wet)	15.50	15.86
Pan + Soil (dry)	12.60	12.83
Moisture Content	35.1%	35.2%

Plastic Limit 35
Plastic Index 16

USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID DAA-29

Sample Depth 24'-26'

Draper Aden Associates Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	5.78	4.8%	2.00	95.2%
No. 40	30.30	25.2%	0.425	70.0%
No. 100	23.64	19.7%	0.15	50.3%
No. 200	15.02	12.5%	0.075	37.8%
Pan	0.47	0.4%		
Total	75.21	62.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33

Sample Depth 2'-4'

Visual Sample Description Red Silty SAND

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 5/29/2019

Draper Aden Associates

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Natural Moisture Content: ASTM D 2216

Pan Wt 187.15 grams

Pan + Soil (wet) 335.23 grams 303.13 grams

Pan + Soil (dry) Natural Moisture Content 27.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

261.34 grams (dry)

Percent Passing No. 200 Sieve 36.0%

Pan + Soil retained on No. 4 sieve

187.15 grams (dry)

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	26	32
Pan ID	2	314	703
Pan Wt	9.02	9.12	11.53
Pan + Soil (wet)	19.41	20.30	21.05
Pan + Soil (dry)	15.16	15.96	17.46
Moisture Content	69.2%	63.5%	60.5%
Liquid Limit	66	64	62
Liquid Limit	64		

Plastic Limit

Pan ID	23	73
Pan Weight	4.32	4.23
Pan + Soil (wet)	15.69	14.27
Pan + Soil (dry)	12.56	11.51
Moisture Content	38.0%	37.9%

38 Plastic Limit Plastic Index 26

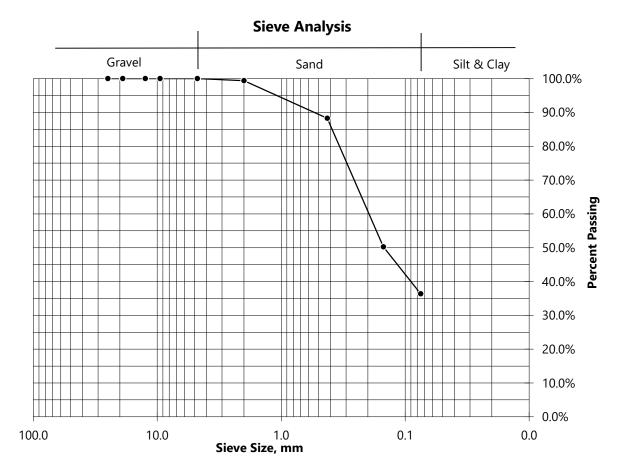
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill

DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 2'-4'


Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.73	0.6%	2.00	99.4%
No. 40	12.90	11.1%	0.425	88.2%
No. 100	44.08	38.0%	0.15	50.2%
No. 200	16.09	13.9%	0.075	36.4%
Pan	0.33	0.3%		
Total	74.13	63.9%		

Draper Aden Associates

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33

Sample Depth 4'-6'

Visual Sample Description Light Reddish-brown Silty SAND

Draper Aden Associates 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227 Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019

Date Tested: 4/17/2019

Date Tested: 5/29/2019

Natural Moisture Content: ASTM D 2216

38

Pan Wt 193.65 grams

Pan + Soil (wet) 300.60 grams

Pan + Soil (dry) 277.67 grams

Natural Moisture Content 27.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

253.13 grams (dry)

Percent Passing No. 200 Sieve 29.2%

Pan + Soil retained on No. 4 sieve

193.65 grams (dry)

100.0% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	23	35
Pan ID	91	169	201
Pan Wt	24.49	27.13	27.63
Pan + Soil (wet)	34.09	36.18	36.99
Pan + Soil (dry)	30.35	32.78	33.64
Moisture Content	63.8%	60.2%	55.7%
Liquid Limit	62	60	58

Plastic Limit

Pan ID	354	356
Pan Weight	9.13	9.08
Pan + Soil (wet)	24.29	24.75
Pan + Soil (dry)	20.53	20.85
Moisture Content	33.0%	33.1%

60

Plastic Limit 33 Plastic Index 27

Liquid Limit

USCS Classification: ASTM D 2487

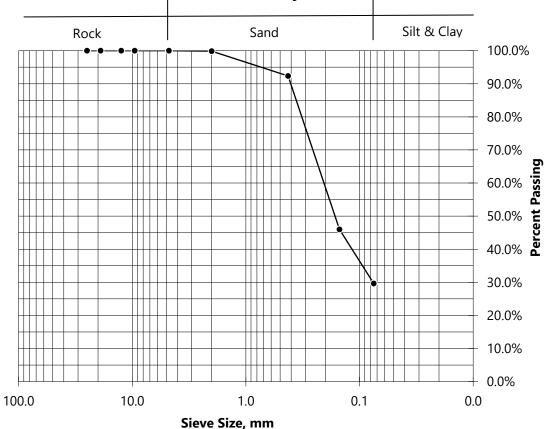
Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33

Sample Depth 4'-6'

Mechanical Sieve Analysis: ASTM D 422


Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.14	0.2%	2.00	99.8%
No. 40	6.28	7.5%	0.425	92.4%
No. 100	38.97	46.4%	0.15	46.0%
No. 200	13.72	16.3%	0.075	29.6%
Pan	0.32	0.4%		
Total	59.43	70.7%		

Draper Aden Associates

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sieve Analysis

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33

Sample Depth 6'-8'

Visual Sample Description Light Brown Silty SAND

Draper Aden Associates

Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Date Tested: 4/23/2019

DAA-33 Sample Received: 4/15/2019 6'-8' Date Tested: 4/15/2019

Natural Moisture Content: ASTM D 2216

Pan ID 19

Pan Wt 188.54 grams Pan + Soil (wet) 363.97 grams

Pan + Soil (dry) 332.50 grams

Natural Moisture Content 21.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 303.48 grams

Percent Passing No. 200 Sieve 20.2%

Pan + Soil retained on No. 4 sieve

(dry) 190.18 grams

Percent Passing No. 4 Sieve 98.9%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit

Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Plastic Limit
Plastic Index

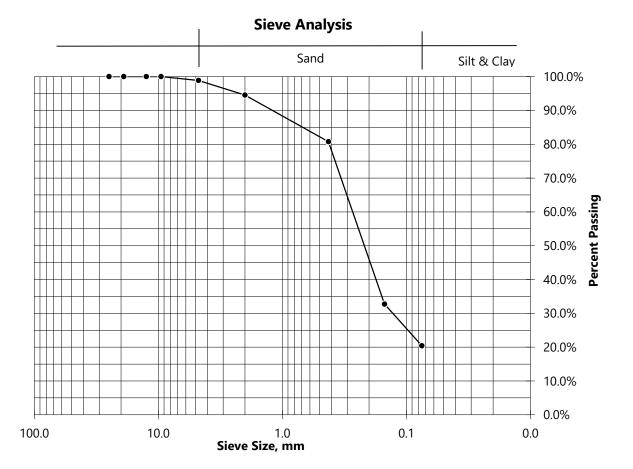
USCS Classification: ASTM D 2487

Green Ridge, Cumberland Landfill

DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 6'-8'


Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	1.64	1.1%	4.75	98.9%
No. 10	6.24	4.3%	2.00	94.5%
No. 40	19.85	13.8%	0.425	80.7%
No. 100	69.12	48.0%	0.15	32.7%
No. 200	17.71	12.3%	0.075	20.4%
Pan	0.36	0.3%		
Total	114.92	79.8%		

Draper Aden Associates

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 6/4/2019

Sample ID DAA-33
Sample Depth 8'-10'
Visual Sample Description Light Gray Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 6

Pan Wt 195.34 grams Pan + Soil (wet) 307.15 grams

Pan + Soil (dry) 294.30 grams

Natural Moisture Content 13.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 253.78 grams

Percent Passing No. 200 Sieve 40.9%

Pan + Soil retained on No. 4 sieve

(dry) 198.00 grams

Percent Passing No. 4 Sieve 97.3%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	23	35
Pan ID	101	107	108
Pan Wt	23.99	25.11	33.14
Pan + Soil (wet)	39.02	37.64	44.89
Pan + Soil (dry)	35.03	34.57	42.26
Moisture Content	36.2%	32.5%	28.8%
Liquid Limit	34	32	30

Plastic Limit

Pan ID	315	352
Pan Weight	9.15	9.07
Pan + Soil (wet)	31.65	29.36
Pan + Soil (dry)	27.76	25.84
Moisture Content	20.9%	21.0%

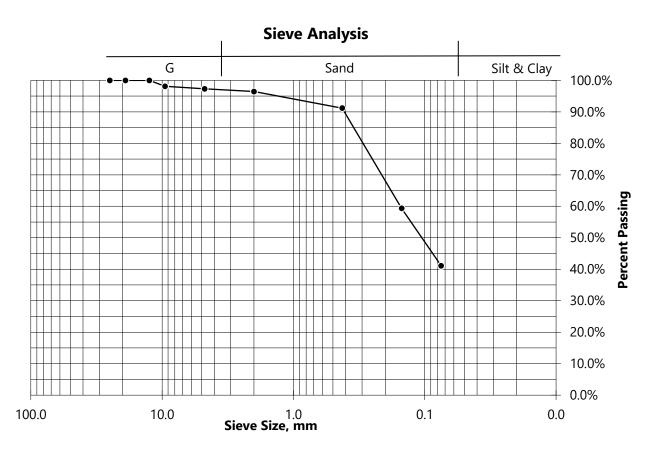
32

Plastic Limit 21
Plastic Index 11

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 8'-10'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	1.85	1.9%	9.50	98.1%
No. 4	0.81	0.8%	4.75	97.3%
No. 10	0.85	0.9%	2.00	96.5%
No. 40	5.22	5.3%	0.425	91.2%
No. 100	31.50	31.8%	0.15	59.3%
No. 200	18.04	18.2%	0.075	41.1%
Pan	0.17	0.2%		
Total	58.44	59.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019

Date Tested: 4/17/2019

Date Tested: 6/4/2019

Sample ID DAA-33 Sample Depth 10'-12'

Visual Sample Description Light Gray Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID

Pan Wt 192.34 grams

Pan + Soil (wet) 333.57 grams

Pan + Soil (dry) 317.63 grams

Natural Moisture Content 12.7%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 277.96 grams

Percent Passing No. 200 Sieve 31.7%

Pan + Soil retained on No. 4 sieve

(dry) 203.21 grams

Percent Passing No. 4 Sieve 91.3%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	26	31
Pan ID	91	96	102
Pan Wt	24.50	24.82	23.96
Pan + Soil (wet)	34.07	34.41	36.18
Pan + Soil (dry)	31.39	31.93	33.21
Moisture Content	38.9%	34.8%	32.2%
Liquid Limit	37	35	33

Plastic Limit

Pan ID	19	74
Fall ID	13	74
Pan Weight	4.35	4.24
Pan + Soil (wet)	17.26	17.16
Pan + Soil (dry)	15.32	15.22
Moisture Content	17.7%	17.7%

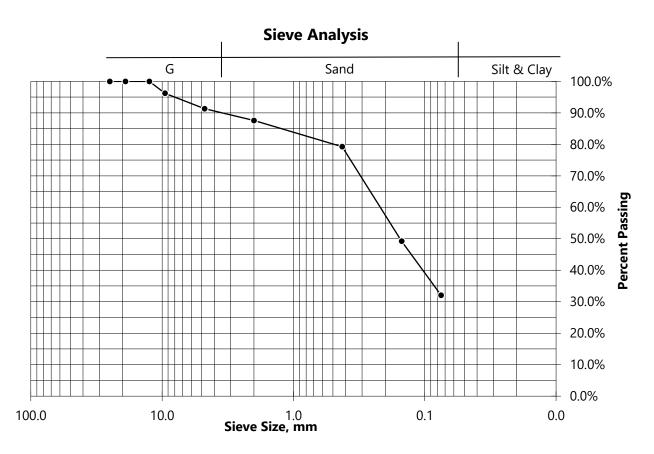
35

Plastic Limit 18
Plastic Index 17

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 10'-12'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	4.75	3.8%	9.50	96.2%
No. 4	6.12	4.9%	4.75	91.3%
No. 10	4.69	3.7%	2.00	87.6%
No. 40	10.44	8.3%	0.425	79.2%
No. 100	37.63	30.0%	0.15	49.2%
No. 200	21.53	17.2%	0.075	32.0%
Pan	0.46	0.4%		
Total	85.62	68.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering · Surveying · Environmental Services

1030 Wilmor Avo. Sta. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-33 Sample Depth 12'-14'

Visual Sample Description Light Reddish-brown Silty SAND

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 4/17/2019

Natural Moisture Content: ASTM D 2216

Pan ID 22

Pan Wt 189.01 grams
Pan + Soil (wet) 336.96 grams
Pan + Soil (dry) 325.31 grams

Natural Moisture Content 8.5%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 297.36 grams

Percent Passing No. 200 Sieve 20.5%

Pan + Soil retained on No. 4 sieve

(dry) 189.22 grams

Percent Passing No. 4 Sieve 99.8%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

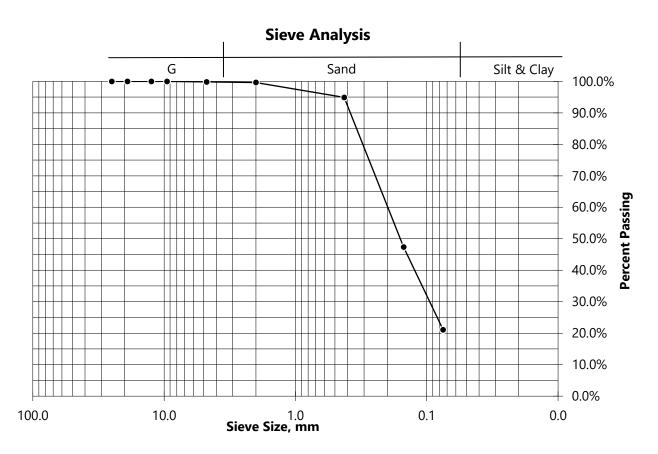
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 12'-14'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.21	0.2%	4.75	99.8%
No. 10	0.29	0.2%	2.00	99.6%
No. 40	6.46	4.7%	0.425	94.9%
No. 100	64.82	47.6%	0.15	47.3%
No. 200	35.81	26.3%	0.075	21.1%
Pan	0.74	0.5%		
Total	108.33	79.5%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates 1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Date Tested: 5/21/2019

Army Corps of Engineers Certified Laboratory

Sample ID DAA-34 Sample Received: 4/15/2019 Date Tested: 4/15/2019

Natural Moisture Content: ASTM D 2216

Pan ID 25

Visual Sample Description Reddish-brown Clayey SAND

Pan Wt 194.03 grams

Pan + Soil (wet) 297.16 grams

Pan + Soil (dry) 275.38 grams

Natural Moisture Content 26.8%

Sample Depth 2'-4'

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 235.52 grams

Percent Passing No. 200 Sieve 49.0%

Pan + Soil retained on No. 4 sieve

(dry) 194.03 grams

100.0% Percent Passing No. 4 Sieve

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	25	33
Pan ID	61	65	6
Pan Wt	10.89	10.94	11.19
Pan + Soil (wet)	21.21	22.31	21.59
Pan + Soil (dry)	16.99	17.84	17.65
Moisture Content	69.3%	64.8%	60.9%
Liquid Limit	67	65	63

Plastic Limit

-		
Pan ID	82	74
Pan Weight	4.23	4.25
Pan + Soil (wet)	14.30	14.52
Pan + Soil (dry)	12.65	12.83
Moisture Content	19.6%	19.7%

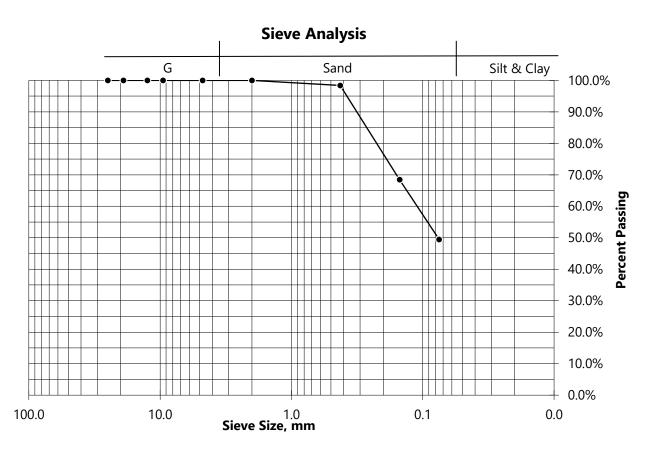
65

Plastic Limit 20 Plastic Index 45

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-34 Sample Depth 2'-4'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.00	0.0%	2.00	100.0%
No. 40	1.31	1.6%	0.425	98.4%
No. 100	24.37	30.0%	0.15	68.4%
No. 200	15.43	19.0%	0.075	49.5%
Pan	0.37	0.5%		
Total	41.48	51.0%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/29/2019

Sample ID DAA-34 Sample Depth 6'-8'

Visual Sample Description Light Brown Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 39

Pan Wt 193.09 grams Pan + Soil (wet) 295.84 grams

Pan + Soil (dry) 286.39 grams

Natural Moisture Content 10.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 270.19 grams

Percent Passing No. 200 Sieve 17.4%

Pan + Soil retained on No. 4 sieve

(dry) 193.34 grams

Percent Passing No. 4 Sieve 99.7%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	24	34
Pan ID	705	710	711
Pan Wt	11.53	11.49	11.55
Pan + Soil (wet)	16.80	16.03	16.39
Pan + Soil (dry)	15.34	14.85	15.22
Moisture Content	38.2%	35.1%	31.8%
Liquid Limit	37	35	33

Plastic Limit

Pan ID	26	122
Pan Weight	2.41	2.42
Pan + Soil (wet)	9.25	11.34
Pan + Soil (dry)	8.15	9.90
Moisture Content	19.2%	19.3%

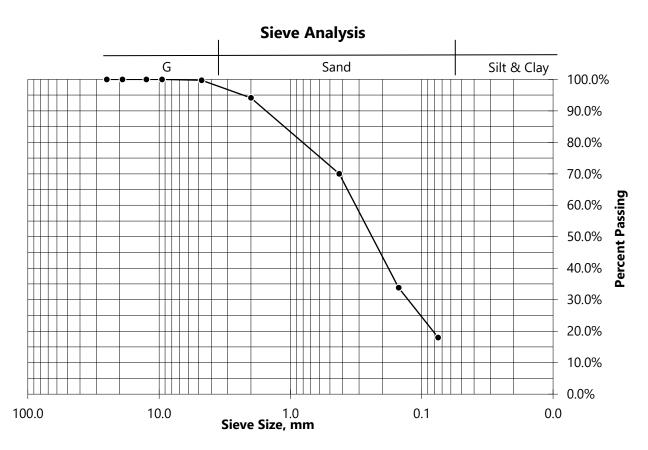
35

Plastic Limit 19
Plastic Index 16

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-34 Sample Depth 6'-8'

Draper Aden Associates Englineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.25	0.3%	4.75	99.7%
No. 10	5.23	5.6%	2.00	94.1%
No. 40	22.50	24.1%	0.425	70.0%
No. 100	33.77	36.2%	0.15	33.8%
No. 200	14.78	15.8%	0.075	18.0%
Pan	0.54	0.6%		
Total	77.07	82.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/29/2019

Sample ID DAA-33 Sample Depth 20'-22' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 4

Pan Wt 194.52 grams Pan + Soil (wet) 307.70 grams

Pan + Soil (dry) 289.46 grams

Natural Moisture Content 19.2%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 262.04 grams

Percent Passing No. 200 Sieve 28.9%

Pan + Soil retained on No. 4 sieve

(dry) 194.52 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

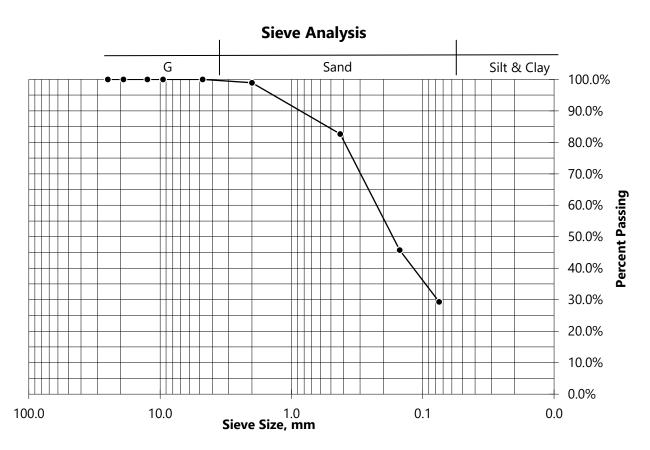
Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		
54 4		

Plastic Limit
Plastic Index

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-33 Sample Depth 20'-22'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	1.01	1.1%	2.00	98.9%
No. 40	15.46	16.3%	0.425	82.7%
No. 100	35.01	36.9%	0.15	45.8%
No. 200	15.64	16.5%	0.075	29.3%
Pan	0.40	0.4%		
Total	67.52	71.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 6/4/2019

Sample ID DAA-35 Sample Depth 2'-4' Visual Sample Description Red Sandy Lean CLAY

Natural Moisture Content: ASTM D 2216

Pan ID 10

Pan Wt 184.07 grams Pan + Soil (wet) 299.66 grams

Pan + Soil (dry) 279.65 grams

Natural Moisture Content 20.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 224.48 grams

Percent Passing No. 200 Sieve 57.7%

Pan + Soil retained on No. 4 sieve

(dry) 184.07 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	27	35
Pan ID	108	169	201
Pan Wt	33.14	27.12	27.64
Pan + Soil (wet)	43.65	40.63	40.98
Pan + Soil (dry)	40.12	36.39	37.02
Moisture Content	50.6%	45.7%	42.2%
Liquid Limit	48	46	44

Liquid Limit 46

Plastic Limit

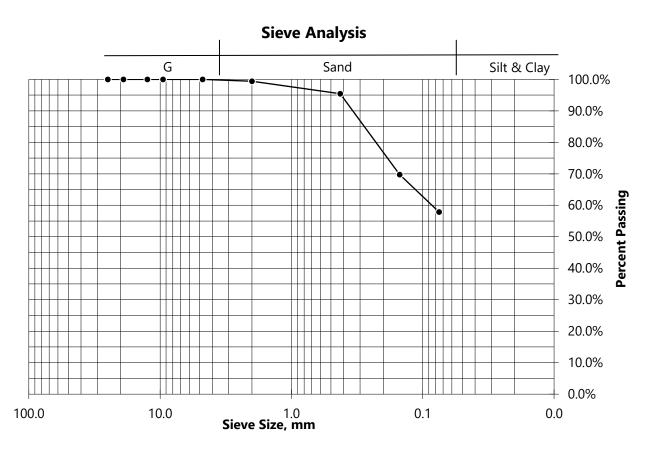
-		
Pan ID	313	352
Pan Weight	9.14	9.09
Pan + Soil (wet)	25.41	21.57
Pan + Soil (dry)	22.33	19.26
Moisture Content	23.4%	22.7%

Plastic Limit 23
Plastic Index 23

USCS Classification: ASTM D 2487

Group Symbol CL

Group Name Sandy Lean CLAY


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-35 Sample Depth 2'-4'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.58	0.6%	2.00	99.4%
No. 40	3.78	4.0%	0.425	95.4%
No. 100	24.54	25.7%	0.15	69.8%
No. 200	11.40	11.9%	0.075	57.8%
Pan	0.10	0.1%		
Total	40.40	42.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/20/2019

Sample ID DAA-35 Sample Depth 4'-6' Visual Sample Description Red Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 17

Pan Wt 188.69 grams Pan + Soil (wet) 313.98 grams

Pan + Soil (dry) 278.70 grams

Natural Moisture Content 39.2%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 241.47 grams

Percent Passing No. 200 Sieve 41.4%

Pan + Soil retained on No. 4 sieve

(dry) 189.64 grams

Percent Passing No. 4 Sieve 98.9%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	22	34
Pan ID	6	10	69
Pan Wt	11.21	11.24	10.96
Pan + Soil (wet)	22.60	22.30	22.56
Pan + Soil (dry)	17.88	17.91	18.18
Moisture Content	70.7%	65.8%	60.7%
Liquid Limit	67	65	63

Plastic Limit

-		
Pan ID	33	52
Pan Weight	2.44	2.42
Pan + Soil (wet)	12.28	13.01
Pan + Soil (dry)	10.03	10.60
Moisture Content	29.6%	29.5%

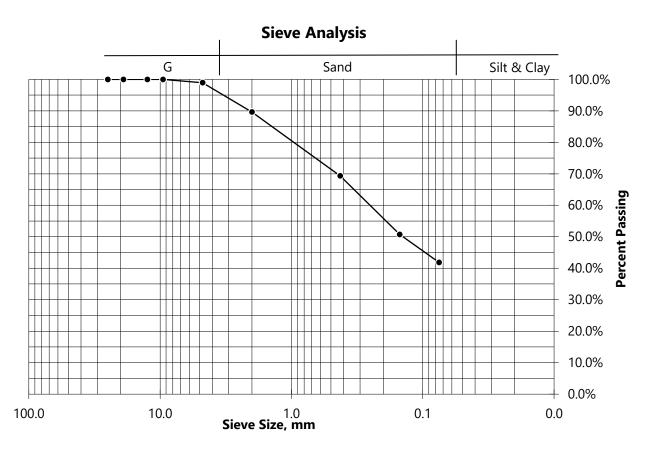
65

Plastic Limit 30 Plastic Index 35

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-35 Sample Depth 4'-6'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.95	1.1%	4.75	98.9%
No. 10	8.39	9.3%	2.00	89.6%
No. 40	18.25	20.3%	0.425	69.3%
No. 100	16.74	18.6%	0.15	50.7%
No. 200	8.03	8.9%	0.075	41.8%
Pan	0.41	0.5%		
Total	52.77	58.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100

Draper Aden Associates

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/9/2019

Sample ID DAA-35 Sample Depth 6'-8'

Visual Sample Description Reddish-brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 30

Pan Wt 193.23 grams

Pan + Soil (wet) 330.76 grams

Pan + Soil (dry) 298.94 grams

Natural Moisture Content 30.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

257.27 grams (dry)

Percent Passing No. 200 Sieve 39.4%

Pan + Soil retained on No. 4 sieve

(dry) 193.23 grams

100.0% Percent Passing No. 4 Sieve

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	22	31
Pan ID	93	103	2000
Pan Wt	30.12	27.36	25.68
Pan + Soil (wet)	40.59	37.49	36.47
Pan + Soil (dry)	36.90	34.06	33.02
Moisture Content	54.5%	51.2%	47.0%
Liquid Limit	52	50	48

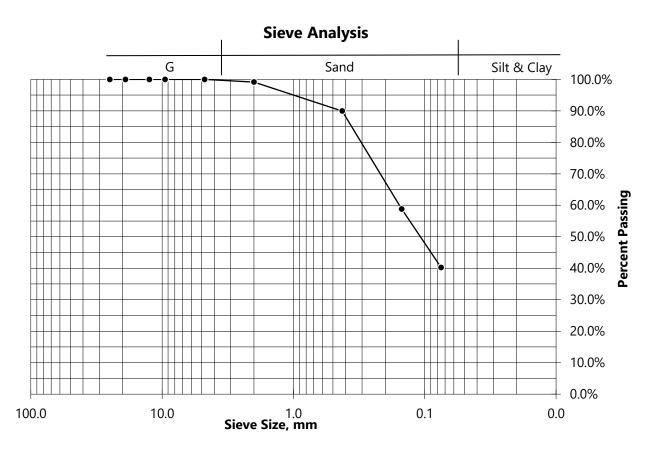
Plastic Limit

Pan ID	19	22
Pan Weight	4.38	4.31
Pan + Soil (wet)	14.59	14.41
Pan + Soil (dry)	11.74	11.58
Moisture Content	38.7%	38.9%

50

Plastic Limit 39 Plastic Index 11

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-35 Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.88	0.8%	2.00	99.2%
No. 40	9.74	9.2%	0.425	90.0%
No. 100	32.89	31.1%	0.15	58.8%
No. 200	19.68	18.6%	0.075	40.2%
Pan	0.85	0.8%		
Total	64.04	60.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associate
Engineering · Surveying · Environmental Service
1030 Wilmer Ave., Ste. 100

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/31/2019

Sample ID DAA-36 Sample Depth 4'-6'

Visual Sample Description Reddish-brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 20

Pan Wt 190.00 grams Pan + Soil (wet) 295.89 grams

Pan + Soil (dry) 268.23 grams

Natural Moisture Content 35.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 236.40 grams

Percent Passing No. 200 Sieve 40.7%

Pan + Soil retained on No. 4 sieve

(dry) 190.00 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	23	32
Pan ID	72	70	64
Pan Wt	11.01	10.95	10.97
Pan + Soil (wet)	22.28	22.70	20.56
Pan + Soil (dry)	17.49	17.87	16.78
Moisture Content	73.9%	69.8%	65.0%
Liquid Limit	71	69	67

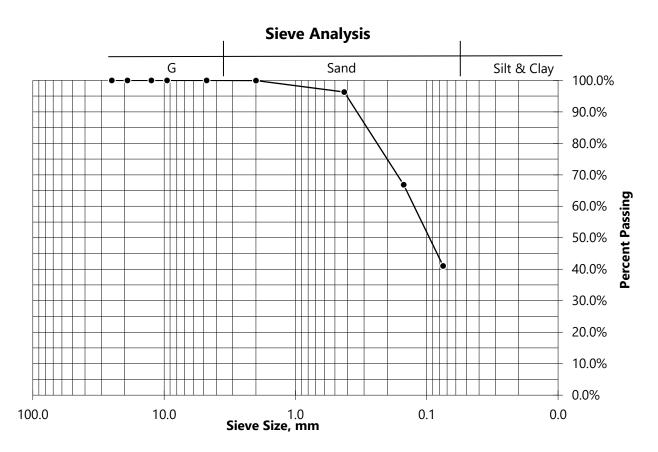
Plastic Limit

-		
Pan ID	75	82
Pan Weight	4.24	4.23
Pan + Soil (wet)	15.88	14.90
Pan + Soil (dry)	11.91	11.27
Moisture Content	51.7%	51.6%

69

Plastic Limit 52
Plastic Index 17

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-36 Sample Depth 4'-6'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.06	0.1%	2.00	99.9%
No. 40	2.84	3.6%	0.425	96.3%
No. 100	23.02	29.4%	0.15	66.9%
No. 200	20.21	25.8%	0.075	41.0%
Pan	0.21	0.3%		
Total	46.34	59.2%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 6/3/2019

Sample ID DAA-36 Sample Depth 6'-8' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 122

Pan Wt 123.35 grams Pan + Soil (wet) 240.36 grams

Pan + Soil (dry) 207.93 grams

Natural Moisture Content 38.3%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 167.12 grams

Percent Passing No. 200 Sieve 48.3%

Pan + Soil retained on No. 4 sieve

(dry) 123.35 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

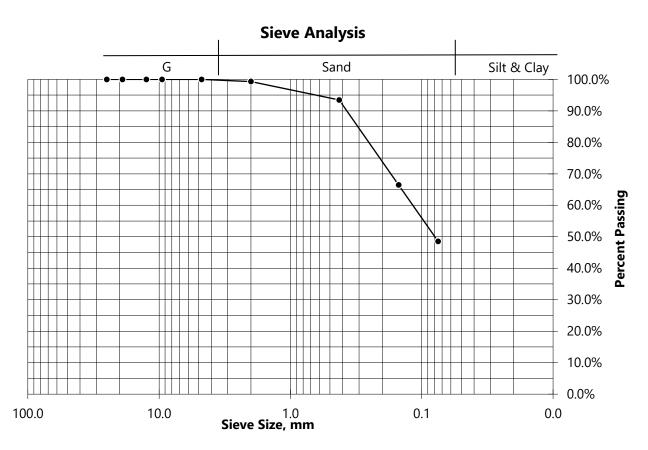
No of Blows	15	25	34
Pan ID	97	105	108
Pan Wt	26.03	29.25	33.13
Pan + Soil (wet)	35.05	45.44	49.58
Pan + Soil (dry)	31.68	39.77	44.09
Moisture Content	59.6%	53.9%	50.1%
Liquid Limit	56	54	52
Liquid Limit	54		

Plastic Limit

Pan ID	75	78
Pan Weight	4.25	4.22
Pan + Soil (wet)	13.42	13.09
Pan + Soil (dry)	11.10	10.83
Moisture Content	33.9%	34.2%

Plastic Limit 34
Plastic Index 20

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-36 Sample Depth 6'-8'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.58	0.7%	2.00	99.3%
No. 40	4.94	5.8%	0.425	93.5%
No. 100	22.85	27.0%	0.15	66.5%
No. 200	15.17	17.9%	0.075	48.5%
Pan	0.23	0.3%		
Total	43.77	51.7%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 5/31/2019

Sample ID DAA-36 Sample Depth 22'-24' Visual Sample Description Light Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 27

Pan Wt 193.73 grams

Pan + Soil (wet) 364.00 grams Pan + Soil (dry) 322.86 grams

Natural Moisture Content 31.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 287.74 grams

Percent Passing No. 200 Sieve 27.2%

Pan + Soil retained on No. 4 sieve

(dry) 194.53 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	24	33
Pan ID	97	7	108
Pan Wt	26.03	11.18	33.13
Pan + Soil (wet)	31.71	23.16	44.41
Pan + Soil (dry)	29.88	19.54	41.21
Moisture Content	47.5%	43.3%	39.6%
Liquid Limit	45	43	41

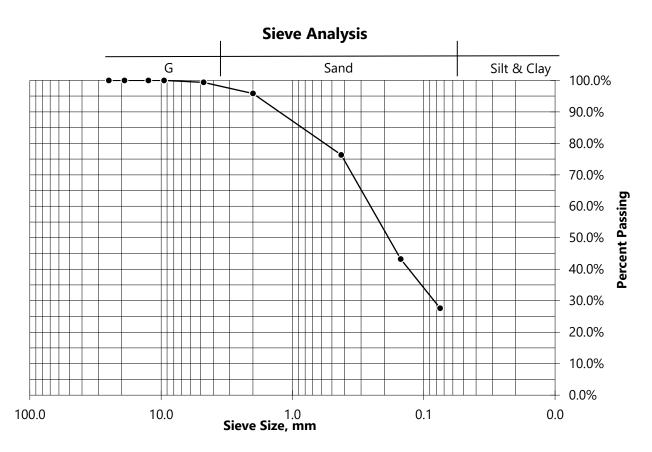
Liquid Limit 43

Plastic Limit

Pan ID	19	73
Pan Weight	4.37	4.24
Pan + Soil (wet)	16.38	16.92
Pan + Soil (dry)	13.68	14.08
Moisture Content	29.0%	28.9%

Plastic Limit 29
Plastic Index 14

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-36 Sample Depth 22'-24'

	Draper Aden Associates Engineering · Surveying · Environmental Services
1030	Wilmer Ave., Ste. 100
Richn	nond, VA 23227
Army Co	orps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.80	0.6%	4.75	99.4%
No. 10	4.57	3.5%	2.00	95.8%
No. 40	25.19	19.5%	0.425	76.3%
No. 100	42.70	33.1%	0.15	43.3%
No. 200	20.24	15.7%	0.075	27.6%
Pan	0.51	0.4%		
Total	94.01	72.8%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-36 Sample Depth 35'-37'

Visual Sample Description Light Reddish-brown Silty SAND

Sample Received: 4/15/2019 Date Tested: 4/15/2019

Date Tested: 6/3/2019

Natural Moisture Content: ASTM D 2216

Pan ID 34

Pan Wt 192.79 grams

Pan + Soil (wet) 314.64 grams Pan + Soil (dry) 290.95 grams

Natural Moisture Content 24.1%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 259.87 grams

Percent Passing No. 200 Sieve 31.7%

Pan + Soil retained on No. 4 sieve

(dry) 192.79 grams

Percent Passing No. 4 Sieve 100.0%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	15	26	31
Pan ID	101	107	2000
Pan Wt	23.99	25.10	25.67
Pan + Soil (wet)	35.58	37.10	33.29
Pan + Soil (dry)	31.94	33.62	31.19
Moisture Content	45.7%	40.8%	38.0%
Liquid Limit	43	41	39

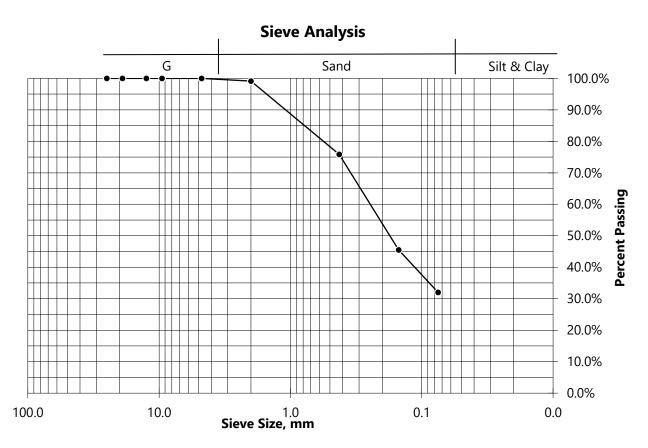
Plastic Limit

-		
Pan ID	354	356
Pan Weight	9.16	9.10
Pan + Soil (wet)	23.82	26.44
Pan + Soil (dry)	20.46	22.45
Moisture Content	29.7%	29.9%

41

Plastic Limit 30
Plastic Index 11

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-36 Sample Depth 35'-37'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.85	0.9%	2.00	99.1%
No. 40	22.86	23.3%	0.425	75.8%
No. 100	29.78	30.3%	0.15	45.5%
No. 200	13.27	13.5%	0.075	32.0%
Pan	0.31	0.3%		
Total	67.07	68.3%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Engineering - Surveying · Environmental S 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/17/2019

Date Tested: 5/21/2019

Sample ID DAA-37 Sample Depth 4'-6' Visual Sample Description Red Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 108

Pan Wt 125.54 grams Pan + Soil (wet) 238.24 grams

Pan + Soil (dry) 215.11 grams

Natural Moisture Content 25.8%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 173.89 grams

Percent Passing No. 200 Sieve 46.0%

Pan + Soil retained on No. 4 sieve

(dry) 125.54 grams

Percent Passing No. 4 Sieve 100.0%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

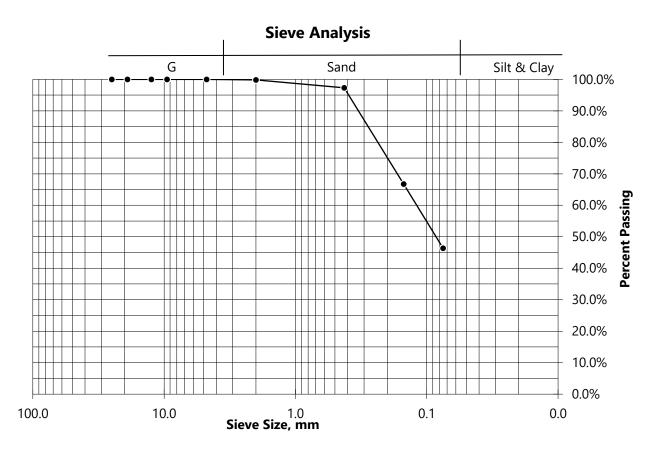
No of Blows	16	26	34
Pan ID	10	71	69
Pan Wt	11.25	10.91	10.97
Pan + Soil (wet)	22.55	22.90	21.96
Pan + Soil (dry)	18.45	18.82	18.37
Moisture Content	57.0%	51.6%	48.5%
Liquid Limit	54	52	50
Liquid Limit	52		

Plastic Limit

Pan ID	353	315
Pan Weight	9.12	9.15
Pan + Soil (wet)	20.72	20.18
Pan + Soil (dry)	17.82	17.42
Moisture Content	33.3%	33.4%

Plastic Limit 33
Plastic Index 19

USCS Classification: ASTM D 2487


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-37 Sample Depth 4'-6'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.00	0.0%	4.75	100.0%
No. 10	0.16	0.2%	2.00	99.8%
No. 40	2.26	2.5%	0.425	97.3%
No. 100	27.35	30.5%	0.15	66.8%
No. 200	18.30	20.4%	0.075	46.3%
Pan	0.28	0.3%		
Total	48.35	54.0%		

Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID DAA-40

Sample Depth 5'

Visual Sample Description Reddish-Brown Sandy Elastic SILT

Sample Received: 4/17/2019 Date Tested: 4/17/2019

Date Tested: 4/29/2019

Natural Moisture Content: ASTM D 2216

Pan ID 24

Pan Wt 186.14 grams

Pan + Soil (wet) 295.88 grams Pan + Soil (dry) 271.59 grams

Natural Moisture Content 28.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 228.52 grams

Percent Passing No. 200 Sieve 50.4%

Pan + Soil retained on No. 4 sieve

(dry) 186.94 grams

Percent Passing No. 4 Sieve 99.1%

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	19	26	31
Pan ID	6	72	9
Pan Wt	11.18	11.08	11.11
Pan + Soil (wet)	31.14	28.22	33.35
Pan + Soil (dry)	23.82	22.20	25.87
Moisture Content	57.9%	54.1%	50.7%
Liquid Limit	56	54	52
Liquid Limit	54		

Plastic Limit

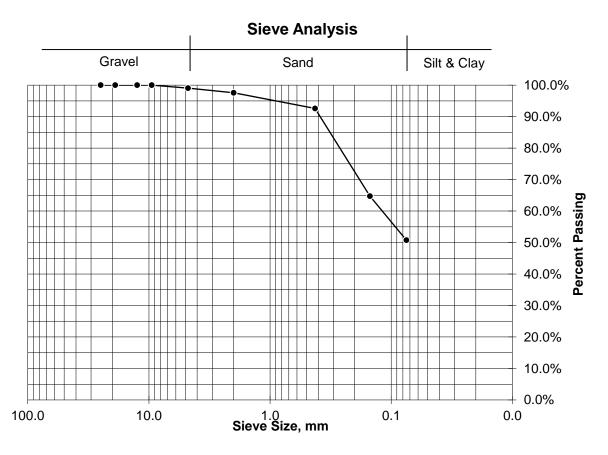
Pan ID	18	73
Pan Weight	4.33	4.24
Pan + Soil (wet)	14.66	15.30
Pan + Soil (dry)	11.98	12.47
Moisture Content	35.0%	34.4%

Plastic Limit 35
Plastic Index 19

USCS Classification: ASTM D 2487

Group Symbol MH

Group Name Sandy Elastic SILT


Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-40 Sample Depth 5'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.80	0.9%	4.75	99.1%
No. 10	1.28	1.5%	2.00	97.6%
No. 40	4.24	5.0%	0.425	92.6%
No. 100	23.80	27.9%	0.15	64.8%
No. 200	11.94	14.0%	0.075	50.8%
Pan	0.30	0.4%		
Total	42.36	49.6%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Draper Aden Associates

Engineering - Surveying · Environmental Services

1030 Wilmer Ave., Ste. 100

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/22/2019

Date Tested: 5/7/2019

Sample ID DAA-40
Sample Depth 10'

Visual Sample Description Reddish-brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 35

Pan Wt 192.68 grams

Pan + Soil (wet) 303.95 grams Pan + Soil (dry) 285.48 grams

Natural Moisture Content 19.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 247.54 grams

Percent Passing No. 200 Sieve 40.9%

Pan + Soil retained on No. 4 sieve

(dry) 193.35 grams

Percent Passing No. 4 Sieve 99.3%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	29	30
Pan ID	101	64	107
Pan Wt	23.99	10.96	25.10
Pan + Soil (wet)	32.60	24.88	35.01
Pan + Soil (dry)	29.87	20.82	32.22
Moisture Content	46.4%	41.2%	39.1%
Liquid Limit	44	42	40

Plastic Limit

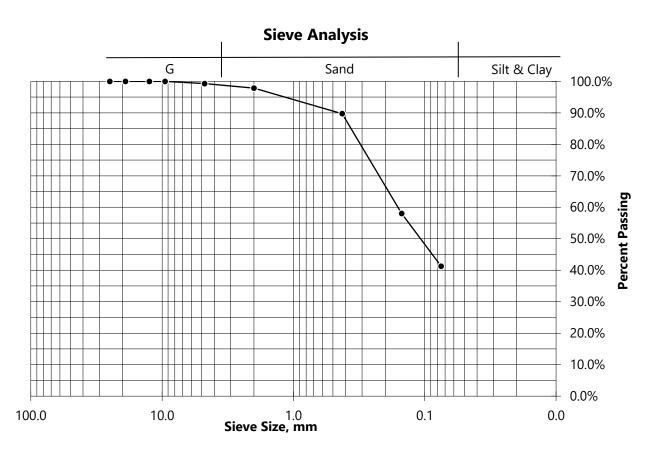
-		
Pan ID	75	315
Pan Weight	4.22	9.15
Pan + Soil (wet)	14.54	20.20
Pan + Soil (dry)	12.05	17.53
Moisture Content	31.8%	31.9%

42

Plastic Limit 32
Plastic Index 10

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-40 Sample Depth 10'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.67	0.7%	4.75	99.3%
No. 10	1.32	1.4%	2.00	97.9%
No. 40	7.53	8.1%	0.425	89.7%
No. 100	29.43	31.7%	0.15	58.0%
No. 200	15.55	16.8%	0.075	41.3%
Pan	0.33	0.4%		
Total	54.83	59.1%		

Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Received: 4/15/2019 Date Tested: 4/17/2019

Date Tested: 6/4/2019

Sample ID DAA-40 Sample Depth 15' Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 114

Pan Wt 123.19 grams Pan + Soil (wet) 230.16 grams

Pan + Soil (dry) 208.83 grams

Natural Moisture Content 24.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 170.44 grams

Percent Passing No. 200 Sieve 44.8%

Pan + Soil retained on No. 4 sieve

(dry) 123.37 grams

Percent Passing No. 4 Sieve 99.8%

Liquid Limit

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

15	25	34
92	93	94
25.62	30.06	23.74
32.10	37.18	30.23
29.45	34.44	27.83
69.1%	62.6%	58.8%
65	63	61
	92 25.62 32.10 29.45 69.1%	92 93 25.62 30.06 32.10 37.18 29.45 34.44 69.1% 62.6%

Plastic Limit

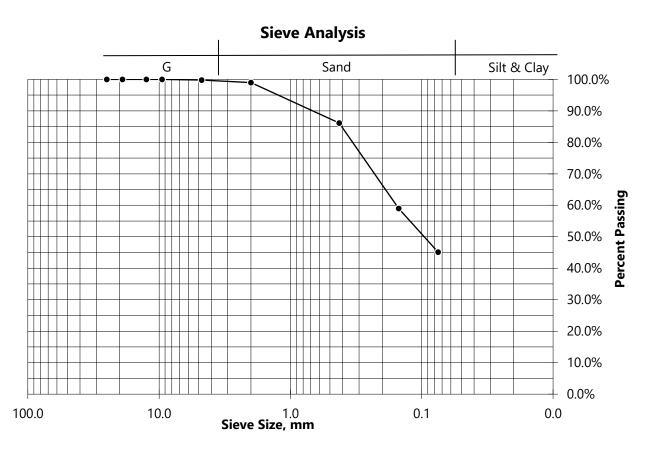
-		
Pan ID	76	79
Pan Weight	4.22	4.23
Pan + Soil (wet)	14.27	16.19
Pan + Soil (dry)	11.74	13.14
Moisture Content	33.6%	34.2%

63

Plastic Limit 34 Plastic Index 29

USCS Classification: ASTM D 2487

Group Symbol **SM**Group Name **Silty SAND**


Green Ridge, Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-40 Sample Depth 15'

Draper Aden Associates Engineering · Surveying · Environmental Services
1030 Wilmer Ave., Ste. 100
Richmond, VA 23227
Army Corps of Engineers Certified Laboratory

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.50	100.0%
No. 4	0.18	0.2%	4.75	99.8%
No. 10	0.70	0.8%	2.00	99.0%
No. 40	11.01	12.9%	0.425	86.1%
No. 100	23.23	27.1%	0.15	59.0%
No. 200	11.90	13.9%	0.075	45.1%
Pan	0.23	0.3%		
Total	47.25	55.2%		

Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-40 Sample Depth 25'

Visual Sample Description Brown Silty SAND

Natural Moisture Content: ASTM D 2216

Pan ID 40

Pan Wt 192.72 grams Pan + Soil (wet) 302.04 grams

Pan + Soil (dry) 290.44 grams

Natural Moisture Content 11.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 255.31 grams

Percent Passing No. 200 Sieve 35.9%

Pan + Soil retained on No. 4 sieve

(dry) 199.47 grams

Percent Passing No. 4 Sieve 93.1%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows		
Pan ID	Non-plastic	
Pan Wt		
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Liquid Limit Liquid Limit

Plastic Limit

Pan ID		
Pan Weight	Non-plastic	
Pan + Soil (wet)		
Pan + Soil (dry)		
Moisture Content		

Plastic Limit Plastic Index

USCS Classification: ASTM D 2487

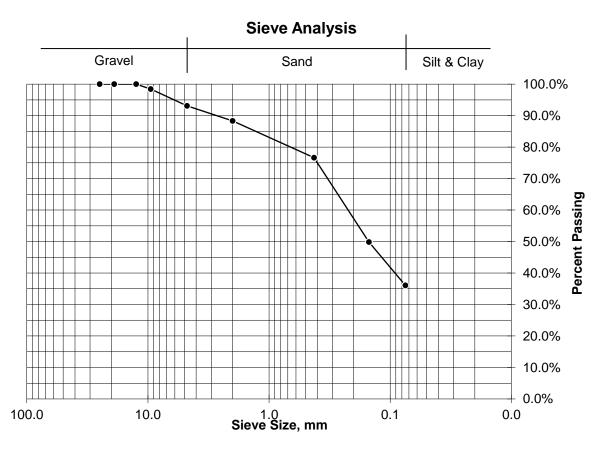
Group Symbol **SM**Group Name **Silty SAND**

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Received: 4/17/2019 Date Tested: 4/22/2019

Date Tested: 5/1/2019


Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID DAA-40 Sample Depth 25'

Weight	Percent	Sieve	Percent
Retained	Retained	Size, mm	Passing
0.00	0.0%	25.0	100.0%
0.00	0.0%	19.0	100.0%
0.00	0.0%	12.5	100.0%
1.52	1.6%	9.50	98.4%
5.23	5.4%	4.75	93.1%
4.65	4.8%	2.00	88.3%
11.45	11.7%	0.425	76.6%
26.14	26.7%	0.15	49.9%
13.47	13.8%	0.075	36.1%
0.13	0.1%		
62.59	64.1%		
	Retained 0.00 0.00 0.00 1.52 5.23 4.65 11.45 26.14 13.47 0.13	Retained Retained 0.00 0.0% 0.00 0.0% 0.00 0.0% 1.52 1.6% 5.23 5.4% 4.65 4.8% 11.45 11.7% 26.14 26.7% 13.47 13.8% 0.13 0.1%	Retained Retained Size, mm 0.00 0.0% 25.0 0.00 0.0% 19.0 0.00 0.0% 12.5 1.52 1.6% 9.50 5.23 5.4% 4.75 4.65 4.8% 2.00 11.45 11.7% 0.425 26.14 26.7% 0.15 13.47 13.8% 0.075 0.13 0.1% 0.1%

Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID East Sample Depth 0'-2.5'

Visual Sample Description Brown Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 101

Pan Wt 122.74 grams

Pan + Soil (wet) 486.18 grams Pan + Soil (dry) 454.83 grams

Natural Moisture Content 9.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

342.33 grams (drv)

Percent Passing No. 200 Sieve 33.9%

Pan + Soil retained on No. 4 sieve

127.58 grams (drv)

98.5% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	23	33
Pan ID	1	72	65
Pan Wt	11.22	11.08	11.07
Pan + Soil (wet)	34.59	33.46	31.71
Pan + Soil (dry)	28.32	27.89	26.91
Moisture Content	36.7%	33.1%	30.3%
Liquid Limit	35	33	31
Liquid Limit	<i>33</i>		

Plastic Limit

Pan ID	313	354
Pan Weight	9.15	9.14
Pan + Soil (wet)	19.63	19.44
Pan + Soil (dry)	17.91	17.75
Moisture Content	19.6%	19.6%

Plastic Limit 20 Plastic Index 13

USCS Classification: ASTM D 2487

Group Symbol SC

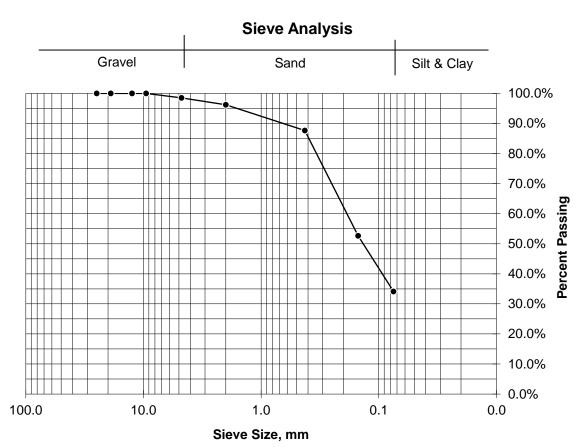
Group Name Clayey SAND

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Recieved: 4/11/2019 Date Tested: 4/15/2019

Date Tested: 4/15/2019


Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW

Sample ID East Sample Depth 0'-2.5'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	4.84	1.5%	4.75	98.5%
No. 10	7.67	2.3%	2.0	96.2%
No. 40	28.50	8.6%	0.425	87.7%
No. 100	116.30	35.0%	0.15	52.6%
No. 200	61.42	18.5%	0.075	34.1%
Pan	0.84	0.3%		
Total	219.57	66.1%		

Proctor Test Report

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

Sample Recieved: 4/11/2019

Date Tested: 4/18/2019

Soil and Test Method Data

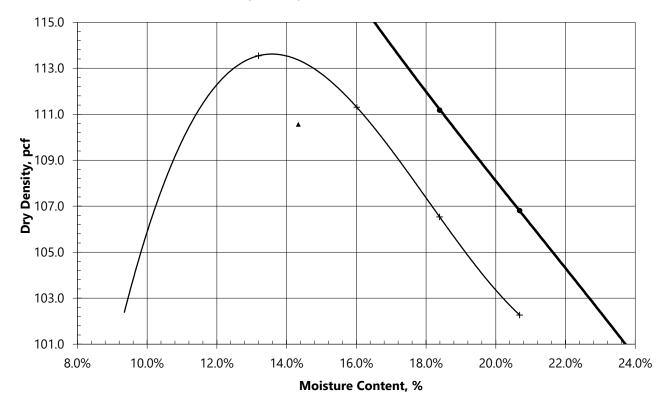
Sample ID East Sample Depth 0'-2.5'

Sample Classification Clayey SAND

USCS Group Symbol SC

Test Method ASTM D698, Method B, with mechanical hammer

Sample Preparation Air dried and sieved through a 3/8" sieve.


Mold Size, in 4.0

Assumed Specific Gravity: 2.65

Test Data		#1	#2	#3	#4	#5
	Moisture Content	13.2%	16.0%	18.4%	20.7%	
	Dry Density, pcf	113.5	111.3	106.5	102.3	

Moisture-Density Curve

Maximum Dry Density, pcf = 113.7, Optimum Moisture, % = 13.6

• Zero Air Voids

+ Proctor Points

▲ Perm Points

Permeability Calculations

Cumberland Landfill DAA# 18020117-030102 **Prepared By: CBW**

Army Corps of Engineers Certified Laboratory

Sample ID: East Sample Depth: 0'-2.5'

Permeability Method: ASTM D5084

Sample Length, in: 3.26 Sample Diameter, in: 2.86 Sample Condition: Remolded Sample Recieved: 4/11/2019 Date Tested: 5/1/2019

110.6 pcf

Moisture Content

Dry Density 6.64 grams Soil (wet) 695.38 grams Wet Density 126.5 pcf

Pan + Soil (wet) 342.71 grams 300.57 grams Pan + Soil (dry)

Moisture Content 14.3%

Test Conditions

Pan Wt

Initial Data

Dry Density

Backpressure, psi	40.0	Assumed Specific Gravity	2.65
Cell Pressure, psi	50.0	Percent Voids	33.1%
Influent Buret Area, cm^2	0.03142	Actual Volume of Voids	113.7 ml
Effluent Buret Area, cm^2	0.76712	Porosity	33.1%
Effective Stress, psi	10.0	Saturation	76.7%

Pearment Liquid Temp.(°C): De-aired Water

Permeability Trials

Permeability 1	Γrials				Flow		
Time	Influent	Influent	Effluent	Effluent	Deviation	Gradient	Permeabilty, k
min	Head, cm	Flow, cm^3	Head, cm	Flow, cm^3	Ratio	mm-Hg	cm/sec
2-May 17:50	15.500		1.600				
2-May 17:51	15.000	0.016	1.620	0.016	1.00	21.07	3.1E-07
2-May 17:52	14.800	0.006	1.629	0.006	1.00	20.28	1.3E-07
2-May 17:53	14.500	0.009	1.641	0.009	1.00	19.96	1.9E-07
2-May 17:54	14.000	0.016	1.661	0.016	1.00	19.49	3.3E-07
2-May 17:55	13.700	0.009	1.674	0.009	1.00	18.70	2.1E-07
2-May 17:56	13.500	0.006	1.682	0.006	1.00	18.23	1.4E-07
2-May 17:57	13.300	0.006	1.690	0.006	1.00	17.91	1.4E-07
2-May 17:58	13.200	0.003	1.694	0.003	1.00	17.60	7.2E-08
2-May 18:04	12.500	0.022	1.723	0.022	1.00	17.44	8.7E-08

Average Permeability 1.1E-07 cm/sec Corrected for 20°C

Final Data

Assumed Specific Gravity	2.65		
Final Weight of Sample	719.46 grams		
Final Moisture Content	18.3%	Final Sample Length, in:	3.22
Percent Voids	32.3%	Final Sample Diameter, in:	2.86
Actual Volume of Voids	109.4 ml	Wet Density	132.5 pcf
Porosity	32.3%	Dry Density	112.0 pcf
Saturation	100.0%		

Cumberland Landfill DAA# 18020117-030102 **Prepared By: CBW**

1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample ID East Sample Depth 2.5'-5'

Visual Sample Description Light Brown Clayey SAND

Sample Recieved: 4/11/2019 Date Tested: 4/15/2019

Date Tested: 4/26/2019

Natural Moisture Content: ASTM D 2216

Pan ID 104

Pan Wt 125.63 grams

Pan + Soil (wet) 538.52 grams

515.37 grams Pan + Soil (dry)

Natural Moisture Content 5.9%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

398.08 grams (drv)

Percent Passing No. 200 Sieve 30.1%

Pan + Soil retained on No. 4 sieve

126.51 grams (drv)

99.8% Percent Passing No. 4 Sieve

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	16	22	35
Pan ID	107	102	96
Pan Wt	25.10	23.97	24.80
Pan + Soil (wet)	42.64	42.16	43.15
Pan + Soil (dry)	37.79	37.49	38.84
Moisture Content	38.2%	34.5%	30.7%
Liquid Limit	36	34	32
Liquid Limit	34		

Plastic Limit

Pan ID	315	316
Pan Weight	9.16	9.08
Pan + Soil (wet)	21.90	19.35
Pan + Soil (dry)	19.81	17.66
Moisture Content	19.6%	19.7%

Plastic Limit 20 Plastic Index 14

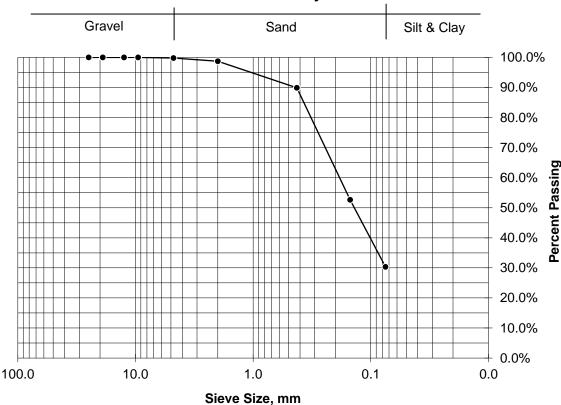
USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND

Cumberland Landfill DAA# 18020117-030102

Prepared By: CBW


Sample ID East Sample Depth 2.5'-5'

Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	0.88	0.2%	4.75	99.8%
No. 10	4.05	1.0%	2.0	98.7%
No. 40	34.43	8.8%	0.425	89.9%
No. 100	145.18	37.3%	0.15	52.7%
No. 200	87.01	22.3%	0.075	30.3%
Pan	0.90	0.2%		
Total	272.45	69.9%		

Sieve Analysis

Proctor Test Report

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW 1030 Wilmer Ave., Ste. 100
Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample Recieved: 4/11/2019

Date Tested: 4/18/2019

Draper Aden Associates

Soil and Test Method Data

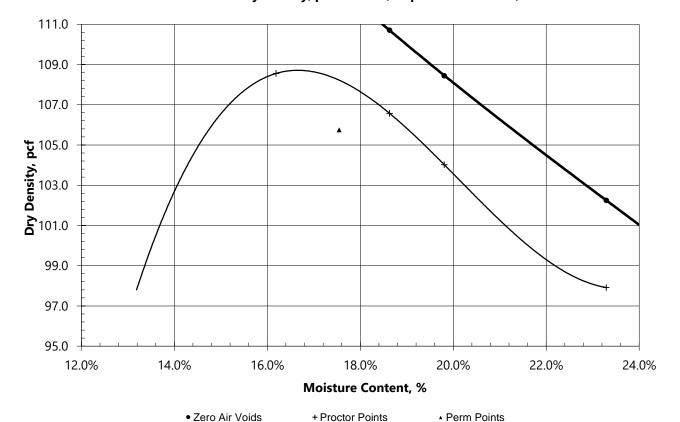
Sample ID East Sample Depth 2.5'-5'

Sample Classification Clayey SAND

USCS Group Symbol SC

Test Method ASTM D698, Method B, with mechanical hammer

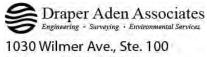
Sample Preparation Air dried and sieved through a 3/8" sieve.


Mold Size, in 4.0

Assumed Specific Gravity: 2.65

Test Data		#1	#2	#3	#4	#5
	Moisture Content	16.2%	18.6%	19.8%	23.3%	
	Dry Density, pcf	108.6	106.6	104.0	97.9	

Moisture-Density Curve


Maximum Dry Density, pcf = 108.8, Optimum Moisture, % = 16.7

Permeability Calculations

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

Moisture Content

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID: East Sample Depth: 2.5'-5'

Permeability Method: ASTM D5084

Sample Length, in: 3.29
Sample Diameter, in: 2.85
Sample Condition: Remolded

17.5%

Dry Density

Sample Recieved: 4/11/2019

Date Tested: 5/1/2019

 Pan Wt
 6.62 grams
 Soil (wet)
 685.35 grams

 Pan + Soil (wet)
 307.15 grams
 Wet Density
 124.4 pcf

 Pan + Soil (dry)
 262.29 grams
 Dry Density
 105.8 pcf

Test Conditions

Moisture Content

Initial Data

Backpressure, psi	40.0	Assumed Specific Gravity	2.65
Cell Pressure, psi	50.0	Percent Voids	36.0%
Influent Buret Area, cm^2	0.03142	Actual Volume of Voids	123.9 ml
Effluent Buret Area, cm^2	0.76712	Porosity	36.0%
Effective Stress, psi	10.0	Saturation	82.6%

Pearment Liquid Temp.(°C): De-aired Water

Permeability Trials

	Flo	OW	
_		. •	

Time	Influent	Influent	Effluent	Effluent	Deviation	Gradient	Permeabilty, k
min	Head, cm	Influent Flow, cm^3	Head, cm	Flow, cm^3	Ratio	mm-Hg	cm/sec
2-May 17:35	15.700		1.600				
2-May 17:36	15.400	0.009	1.612	0.009	1.00	21.18	1.8E-07
2-May 17:37	15.100	0.009	1.625	0.009	1.00	20.71	1.9E-07
2-May 17:38	14.900	0.006	1.633	0.006	1.00	20.24	1.3E-07
2-May 17:39	14.700	0.006	1.641	0.006	1.00	19.92	1.3E-07
2-May 17:40	14.500	0.006	1.649	0.006	1.00	19.61	1.3E-07
2-May 17:41	14.300	0.006	1.657	0.006	1.00	19.30	1.3E-07
2-May 17:42	14.100	0.006	1.666	0.006	1.00	18.99	1.4E-07
2-May 17:43	13.950	0.005	1.672	0.005	1.00	18.67	1.0E-07
2-May 17:48	13.700	0.008	1.682	0.008	1.00	18.44	3.5E-08

Average Permeability 1.0E-07 cm/sec Corrected for 20°C

Final Data

Assumed Specific Gravity	2.65		
Final Weight of Sample	704.08 grams		
Final Moisture Content	20.8%	Final Sample Length, in:	3.25
Percent Voids	35.7%	Final Sample Diameter, in:	2.86
Actual Volume of Voids	122.1 ml	Wet Density	128.4 pcf
Porosity	35.7%	Dry Density	106.4 pcf
Saturation	99.1%		

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Draper Aden Associates

Army Corps of Engineers Certified Laboratory

Sample Recieved: 4/11/2019

Date Tested: 4/15/2019

Date Tested: 4/26/2019

Sample ID West Sample Depth 0'-2.5'

Visual Sample Description Brown Clayey SAND

Natural Moisture Content: ASTM D 2216

Pan ID 5

Pan Wt 194.83 grams

Pan + Soil (wet) 551.40 grams

Pan + Soil (dry) 495.88 grams

Natural Moisture Content 18.4%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 354.62 grams

Percent Passing No. 200 Sieve 46.9%

Pan + Soil retained on No. 4 sieve

(dry) 196.72 grams

Percent Passing No. 4 Sieve 99.4%

Soil Classifies as Coarse-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	17	23	31
Pan ID	64	69	70
Pan Wt	10.99	10.97	10.99
Pan + Soil (wet)	31.87	28.30	29.17
Pan + Soil (dry)	24.06	22.08	22.96
Moisture Content	59.7%	56.0%	51.8%
Liquid Limit	57	55	53

Liquid Limit 55

Plastic Limit

Pan ID	2	4
Pan Weight	9.01	9.00
Pan + Soil (wet)	19.06	19.15
Pan + Soil (dry)	17.23	17.30
Moisture Content	22.3%	22.3%

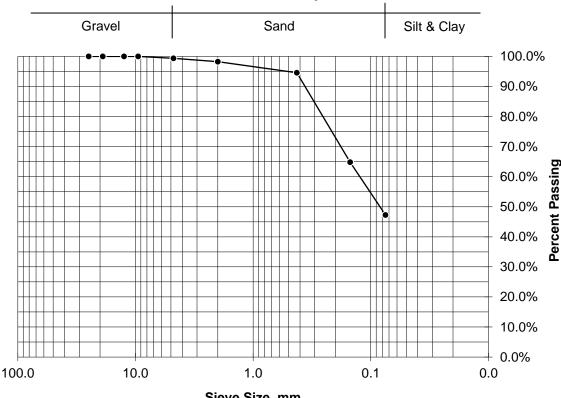
Plastic Limit 22 Plastic Index 33

USCS Classification: ASTM D 2487

Group Symbol SC

Group Name Clayey SAND

Cumberland Landfill DAA# 18020117-030102 **Prepared By: CBW**


Sample ID West Sample Depth 0'-2.5'

Mechanical Sieve Analysis: ASTM D 422

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	1.89	0.6%	4.75	99.4%
No. 10	3.42	1.1%	2.0	98.2%
No. 40	11.00	3.7%	0.425	94.6%
No. 100	89.53	29.7%	0.15	64.8%
No. 200	52.95	17.6%	0.075	47.3%
Pan	0.99	0.3%		
Total	159.78	53.1%		

Sieve Analysis

Sieve Size, mm

Proctor Test Report

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

Sample Recieved: 4/11/2019

Date Tested: 4/18/2019

Soil and Test Method Data

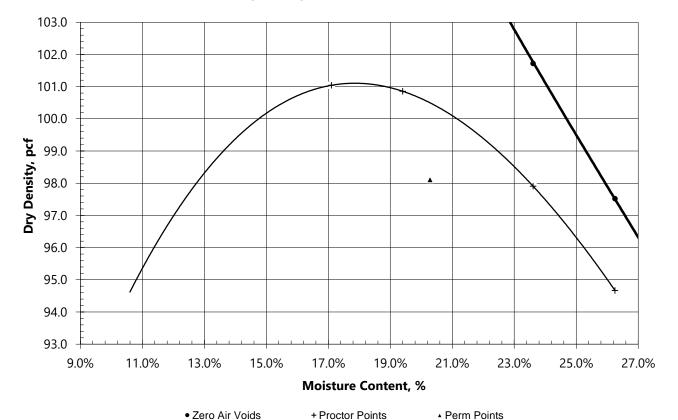
Sample ID West Sample Depth 0'-2.5'

Sample Classification Clayey SAND

USCS Group Symbol SC

Test Method ASTM D698, Method B, with mechanical hammer

Sample Preparation Air dried and sieved through a 3/8" sieve.


Mold Size, in 4.0

Assumed Specific Gravity: 2.65

Test Data		#1	#2	#3	#4	#5
	Moisture Content	17.1%	19.4%	23.6%	26.3%	
	Dry Density, pcf	101.0	100.9	97.9	94.7	

Moisture-Density Curve

Maximum Dry Density, pcf = 101.2, Optimum Moisture, % = 18.0

Permeability Calculations

Draper Aden Associates
Engineering · Surveying · Environmental Services 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Cumberland Landfill DAA# 18020117-030102 **Prepared By: CBW**

Moisture Content

Sample ID: West Sample Depth: 0'-2.5'

Permeability Method: ASTM D5084

Sample Length, in: 3.62 Sample Diameter, in: 2.85 Sample Condition: Remolded

20.3%

Dry Density

Sample Recieved: 4/11/2019

Date Tested: 5/1/2019

Pan Wt 6.59 grams Soil (wet) 715.49 grams Pan + Soil (wet) 218.55 grams Wet Density 118.0 pcf 182.81 grams Pan + Soil (dry) Dry Density 98.1 pcf

Test Conditions

Moisture Content

Initial Data

Backpressure, psi	40.0	Assumed Specific Gravity	2.65
Cell Pressure, psi	50.0	Percent Voids	40.7%
Influent Buret Area, cm^2	0.03142	Actual Volume of Voids	153.9 ml
Effluent Buret Area, cm^2	0.76712	Porosity	40.7%
Effective Stress, psi	10.0	Saturation	78.4%

Pearment Liquid Temp.(°C): De-aired Water

Permeability Trials

	F	lc	W	•	
_					

. crincasinty .	iiais				11000		
Time	Influent	Influent	Effluent	Effluent	Deviation	Gradient	Permeabilty, k
min	Head, cm	Flow, cm^3	Head, cm	Flow, cm^3	Ratio	mm-Hg	cm/sec
2-May 16:55	15.500		1.600				
2-May 16:56	15.000	0.016	1.620	0.016	1.00	18.97	3.4E-07
2-May 16:57	14.800	0.006	1.629	0.006	1.00	18.26	1.4E-07
2-May 16:58	14.600	0.006	1.637	0.006	1.00	17.98	1.4E-07
2-May 16:59	14.400	0.006	1.645	0.006	1.00	17.69	1.4E-07
2-May 17:00	14.200	0.006	1.653	0.006	1.00	17.41	1.5E-07
2-May 17:01	14.100	0.003	1.657	0.003	1.00	17.13	7.5E-08
2-May 17:02	14.000	0.003	1.661	0.003	1.00	16.98	7.5E-08
2-May 17:03	13.900	0.003	1.666	0.003	1.00	16.84	7.6E-08
2-May 17:08	13.400	0.016	1.686	0.016	1.00	16.70	7.8E-08

Average Permeability 7.6E-08 cm/sec Corrected for 20°C

Final Data

2.65		
745.09 grams		
25.3%	Final Sample Length, in:	3.58
40.4%	Final Sample Diameter, in:	2.86
152.4 ml	Wet Density	123.4 pcf
40.4%	Dry Density	98.5 pcf
98.6%		
	745.09 grams 25.3% 40.4% 152.4 ml 40.4%	745.09 grams 25.3% Final Sample Length, in: 40.4% Final Sample Diameter, in: 152.4 ml Wet Density 40.4% Dry Density

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW 1030 Wilmer Ave., Ste. 100 Richmond, VA 23227

Sample Recieved: 4/11/2019

Date Tested: 4/16/2019

Date Tested: 4/29/2019

Army Corps of Engineers Certified Laboratory

Draper Aden Associates

Sample ID West Sample Depth 2.5'-5'

Visual Sample Description Brown Sandy Fat CLAY

Natural Moisture Content: ASTM D 2216

Pan ID 111

Pan Wt 123.54 grams

Pan + Soil (wet) 443.36 grams Pan + Soil (dry) 396.90 grams

Natural Moisture Content 17.0%

Coarse or Fine Grained: ASTM D 422

Pan + Soil retained on No. 200 sieve

(dry) 237.27 grams

Percent Passing No. 200 Sieve 58.4%

Pan + Soil retained on No. 4 sieve

(drv) 123.81 grams

Percent Passing No. 4 Sieve 99.9%

Liquid Limit

Soil Classifies as Fine-Grained Soil

Atterberg Limits: ASTM D 4318

Liquid Limit

No of Blows	18	21	32
Pan ID	92	94	108
Pan Wt	25.60	23.78	33.14
Pan + Soil (wet)	43.31	40.76	50.43
Pan + Soil (dry)	36.76	34.75	44.60
Moisture Content	58.7%	54.8%	50.9%
Liquid Limit	56	54	52

Plastic Limit

Pan ID	75	78
Pan Weight	4.26	4.25
Pan + Soil (wet)	14.50	14.80
Pan + Soil (dry)	12.67	12.90
Moisture Content	21.8%	22.0%

54

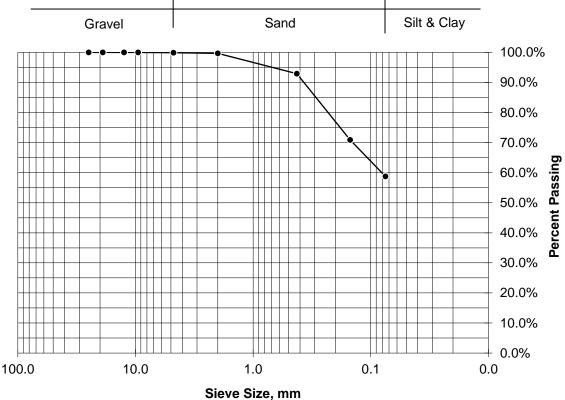
Plastic Limit 22
Plastic Index 32

USCS Classification: ASTM D 2487

Group Symbol CH

Group Name Sandy Fat CLAY

Cumberland Landfill DAA# 18020117-030102


Prepared By: CBW

Sample ID West Sample Depth 2.5'-5'

Sieve	Weight	Percent	Sieve	Percent
Size	Retained	Retained	Size, mm	Passing
1"	0.00	0.0%	25.0	100.0%
3/4"	0.00	0.0%	19.0	100.0%
1/2"	0.00	0.0%	12.5	100.0%
3/8"	0.00	0.0%	9.5	100.0%
No. 4	0.27	0.1%	4.75	99.9%
No. 10	0.60	0.2%	2.0	99.7%
No. 40	18.40	6.7%	0.425	93.0%
No. 100	60.25	22.0%	0.15	70.9%
No. 200	33.27	12.2%	0.075	58.7%
Pan	0.94	0.3%		
Total	113.73	41.6%		

Proctor Test Report

Cumberland Landfill DAA# 18020117-030102 Prepared By: CBW

Sample Recieved: 4/11/2019

Date Tested: 4/18/2019

Soil and Test Method Data

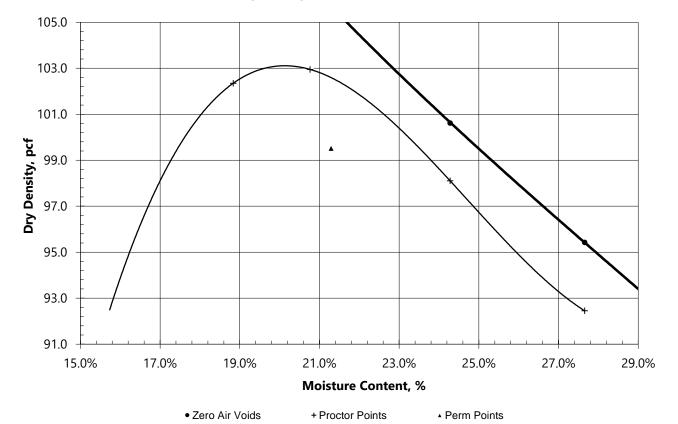
Sample ID West Sample Depth 2.5'-5'

Sample Classification Sandy Fat CLAY

USCS Group Symbol CH

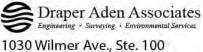
Test Method ASTM D698, Method B, with mechanical hammer

Sample Preparation Air dried and sieved through a 3/8" sieve.


Mold Size, in 4.0

Assumed Specific Gravity: 2.65

Test Data		#1	#2	#3	#4	#5
	Moisture Content	18.8%	20.8%	24.3%	27.7%	
	Dry Density, pcf	102.3	102.9	98.1	92.5	


Moisture-Density Curve

Maximum Dry Density, pcf = 103.2, Optimum Moisture, % = 20.1

Permeability Calculations

Cumberland Landfill DAA# 18020117-030102 **Prepared By: CBW**

Richmond, VA 23227

Army Corps of Engineers Certified Laboratory

Sample ID: West Sample Depth: 2.5'-5'

Date Tested: 5/2/2019

Permeability Method: ASTM D5084 Sample Length, in: 3.64 Sample Diameter, in: 2.86 Sample Condition: Remolded

Moisture Content

Dry Density

Sample Recieved: 4/11/2019

Pan Wt	6.65 grams	Soil (wet)	741.01 grams
Pan + Soil (wet)	241.12 grams	Wet Density	120.7 pcf
Pan + Soil (dry)	199.96 grams	Dry Density	99.5 pcf
Moisture Content	21.3%		

Test Conditions

Initial Data

Backpressure, psi	40.0	Assumed Specific Gravity	2.65
Cell Pressure, psi	50.0	Percent Voids	39.8%
Influent Buret Area, cm^2	0.03142	Actual Volume of Voids	152.6 ml
Effluent Buret Area, cm^2	0.76712	Porosity	39.8%
Effective Stress, psi	10.0	Saturation	85.2%

De-aired Water Pearment Liquid Temp.(°C):

Permeability Trials

Flow

rials				Flow		
Influent	Influent	Effluent	Effluent	Deviation	Gradient	Permeabilty, k
Head, cm	Flow, cm^3	Head, cm	Flow, cm^3	Ratio	mm-Hg	cm/sec
15.500		1.600				
14.900	0.019	1.625	0.019	1.00	18.87	4.1E-07
14.700	0.006	1.633	0.006	1.00	18.02	1.4E-07
14.600	0.003	1.637	0.003	1.00	17.74	7.2E-08
14.500	0.003	1.641	0.003	1.00	17.60	7.2E-08
14.400	0.003	1.645	0.003	1.00	17.45	7.3E-08
14.300	0.003	1.649	0.003	1.00	17.31	7.3E-08
14.200	0.003	1.653	0.003	1.00	17.17	7.4E-08
14.100	0.003	1.657	0.003	1.00	17.03	7.4E-08
13.700	0.013	1.674	0.013	1.00	16.89	6.1E-08
	15.500 14.900 14.700 14.600 14.500 14.400 14.300 14.200 14.100	Influent Head, cm Influent Flow, cm^3 15.500 0.019 14.700 0.006 14.600 0.003 14.500 0.003 14.400 0.003 14.300 0.003 14.200 0.003 14.100 0.003	Influent Head, cmInfluent Flow, cm^3Effluent Head, cm15.5001.60014.9000.0191.62514.7000.0061.63314.6000.0031.63714.5000.0031.64114.4000.0031.64514.3000.0031.64914.2000.0031.65314.1000.0031.657	Influent Head, cm Influent Flow, cm^3 Effluent Head, cm Effluent Flow, cm^3 15.500 1.600 1.625 0.019 14.900 0.019 1.625 0.019 14.700 0.006 1.633 0.006 14.600 0.003 1.637 0.003 14.500 0.003 1.641 0.003 14.300 0.003 1.645 0.003 14.200 0.003 1.653 0.003 14.100 0.003 1.657 0.003	Influent Head, cm Influent Flow, cm^3 Effluent Head, cm Effluent Flow, cm^3 Deviation Ratio 15.500 1.600 1.600 1.00 1.00 14.900 0.019 1.625 0.019 1.00 14.700 0.006 1.633 0.006 1.00 14.600 0.003 1.637 0.003 1.00 14.500 0.003 1.641 0.003 1.00 14.400 0.003 1.645 0.003 1.00 14.200 0.003 1.653 0.003 1.00 14.100 0.003 1.657 0.003 1.00	Influent Head, cm Influent Flow, cm^3 Effluent Head, cm Effluent Flow, cm^3 Deviation Ratio Gradient mm-Hg 15.500 1.600 1.600 1.00 18.87 14.900 0.019 1.625 0.019 1.00 18.87 14.700 0.006 1.633 0.006 1.00 18.02 14.600 0.003 1.637 0.003 1.00 17.74 14.500 0.003 1.641 0.003 1.00 17.45 14.300 0.003 1.649 0.003 1.00 17.31 14.200 0.003 1.653 0.003 1.00 17.17 14.100 0.003 1.657 0.003 1.00 17.03

Average Permeability 7.1E-08 cm/sec Corrected for 20°C

Final Data

Assumed Specific Gravity	2.65		
Final Weight of Sample	761.99 grams		
Final Moisture Content	24.7%	Final Sample Length, in:	3.60
Percent Voids	39.6%	Final Sample Diameter, in:	2.87
Actual Volume of Voids	151.1 ml	Wet Density	124.6 pcf
Porosity	39.6%	Dry Density	99.9 pcf
Saturation	100.0%		

Project:	CC-1100	Drilling Company: Blu		Stickup: 1.2 ft.	
Clients	J. H. Martin	Driller: P. Smith		ELEVATION (FT - AMSL)	
Location:	B-1	G S Technician:	J. Patterson	34	WELL CONSTRUCTION DETAILS
Date:	11/29-30/2017 Depth: 51.5 ft.	Boring Method:	3.25" (D.H. S. Auger	温量	
Depth	Spil/Rock Description	Blow Count	Remarks		
2	Red brown sandy SILT, trace organic matter, moist	3 3 4 5		372.0	Push Cap
4		8 10 12 5 8			
6		9 10 5			
8	Red brown SILT with sand, trace rock fragments @10 ft., moist	6 7 7 3			
10		5 6 5 4 3			1.25 " ID Push Coupling PVC Pipe
12		4 5 6			
14		4 3 3 4 2		←	Natural Formation
16	White gray pink very fine SAND, dry (saprolitic structure)	3 3 4 4			
18		3 4 4 4 5			
20		5			

oject:	CC-1100	Drilling Company: Blue Ridge Drilling, Inc.	77	
ent:	J. H. Martin	Driller: P. Smith	ELEVATION. (FT - AMSL)	Constitution of the Contract of
cation:	B-1	G S Technician: 1. Patterson	88	WELL CONSTRUCTION DETAILS
	11/29-30/2017 Depth: 51.5 ft.	Boring Method: 3.25" ID H. S. Auger	9.6	
Depth	Soll/Rock Description	Blow Count Remarks	W 2	
	Light brown very fine SAND, dry	4		
	Light brown very line salvb, dry	7		H I
		7		11 1
22		8		
	White black micaceous very fine SAND,	7		
	trace rock fragments, dry (increasing	8		11 1
	structure with depth)	6		
24		5		
		6		4 35 II ID Dunk Counting DVC Ding
		7		1.25 " ID Push Coupling PVC Pipe
		6		
26	Light brown light gray micaceous SILTY	6		
	SAND (saprolitic structure at base)	3		
		4		
		4		
28		5		
		5		
	Light brown brown SILTY SAND, moist	5		
		5		Natural Formation
30		7 3		Natural Formation
		11		
_	Light gray very fine SAND, dry	15		
32		15		
32	Light gray very fine SAND, trace rock	9		
"	fragments @ 32.5 ft., dry	14		
		13		
34	Red pink black weathered granite, dry	14		
34		14		
	Gray dark gray, some white banding, very	17		
	fine SAND, dry	17	337.0	H
36	, and	18		H
30	Dark gray black micaceous very fine SAND,	23		H
	dry, biotite rich granodiorite residuum	28		Hand Slotted Screen
	(36.5-37 ft.)	50/6		1.25" ID PVC Pipe
20	(30,3-37.10.)	30,0		H
38	Dark gray black micaceous very fine SAND,	50/3		H
		30/3		H
	dry			H
		1 1		THE T

roject	CC-1100	Drilling Company: Blue Ridge Drilling, Inc. Drillen P. Smith G.S Technician: J. Patterson Boring Method: 3.25" ID H. S. Auger			
lient:	J. H. Martin			MSI	
ocation:	8-2			NA NA	WELL CONSTRUCTION DETAILS
ate:	11/29-30/2017 Depth: 51.5 ft.	Boring Method:	3.25" ID H. S. Auger	99 4	
Depth	Soll/Rock Description	Blow Count	Remarks		
	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3	Saturated @ 41 ft.	331.0	
42		4.K			Natural Formation
	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3			
44					
	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3			Hand Slotted Screen 1.25" ID PVC Pipe
46					
	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3			
48]
	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3			
50					Push Cap
51	Dark gray black micaceous very fine SAND, trace rock fragments, dry	50/3	A Balural Q 51.0 %	321.0	

Auger Refusal @ 51.0 ft.

Project:	CC-1100	Drilling Company: B	lue Ridge Drilling, Inc.	- Stick	kup: 1.0 ft.	
CHents	1. H. Martin	Driller: P. Stnit	h	(FT - AMSK)	<u>*</u>	
location:	B-2	G S Technician:	1. Patterson	83		WELL CONSTRUCTION DETAILS
Date:	11/30/2017 Depth: 42,0 ft.	Boring Method: 3.25	5" ID H. S. Auger/Wireline Core	当世		
Denth	Soll/Rock Description	Blow Count	Remarks			
				359.0		
						Push Cap
					41 4	
2						
		3				
	Red brown SILT, trace clay, moist	5			440 10	
	1000	7				
4		8			11 11	
	Red brown SILT, trace clay, moist	5			11 1	
	Red brown SILT, dry	6				
	1.2.2.0.0.2.1.00	7				
6	Light brown SILT, trace organic matter at	7				
	base, dry	4				
	Light brown SILT, trace structure at base,	4				
	dry	5				
8	1	4				
	Yellow brown SILT, trace rock fragments,	4 3				
	dry	3				1.25 " ID Push Coupling PVC Pipe
10	lory	2				1.25 to took cooping to the
10		2				
	-				41 31	
12					11 1	
					11 1	
14	Yellow brown SANDY SILT, some quartz	3				
	fragments, moist	4			<	Matural Formation
		6				
	-					
16				1		
					11 1	
					11 1	
18						
	Yellow brown SILT, some quartz fragments,	15				
	dry White light gray fine to medium					
20	SAND with structure, dry	9		T		

cation:	J, H, Martin	Dellar: 0			
		Drillers P. Smith		28	100000000000000000000000000000000000000
400		GSTechnician		ELEVATION (FT - AMSL)	WELL CONSTRUCTION DETAILS
te	11/30/2017 Depth: 42.0 ft.		d: 3.25" ID H. 5. Auger/Wireline Core	3 5	
Depth	Soil/Rock Description	Blow Count	Remarks		11
22					
	Black white felspathic granodiorite	23			
	residuum, dry	32			
	Yellow brown light gray fine to coarse	50/5			
	SAND, some rock fragments, dry				1.25 " ID Push Coupling PVC Pipe
26					
				332.0	H
28					
	Dark gray gray white brown fine SAND,	50/3			H I
30	trace rock fragments, dry				Natural Formation
					#
32			Saturated at 32 ft.	327.0	
			Auger Refusal @ 32 ft.		#
34			1 1		
			Run 1: 32-37 ft. Recovery - 38/60 Inches = 63%		Rock
			RQD = 22.75/38 Inches = 60%		Н
36	Biotite rich gneiss with felspathic banding				8 1
				0	Hand Slotted Screen
38			Run 2: 37-42 ft. Recovery - 60/60 inches = 100% RQD = 59/60 inches = 98%		1.25" ID PVC Pipe
40					A

Project:	CC-1100		Orilling Company: Blue Ridge Drilling, Inc.		23	
Client:			Driller: P. Smith G 5 Technician: J. Patterson Boring Method: 3.25" ID H. S. Auger/Wireline Core		MSE)	
Location:					3 4	WELL CONSTRUCTION DETAILS
Date:					3 5	The state of the s
Depth	Soil/Rock	Description	Blow Count	Remarks		
42	- Blotite rich gneiss	with felspathic banding		Run 2 - 37-42 ft. Recovery - 60/60 inches = 100% RQD = 59/50 inches = 98%	317.0	Rock Push Cap

Total Depth @ 42 ft.

Project:	CC-1100				Blue Ridge Drilling, Inc.	77
Client:	J. H. Martin			Driller: P. Sm		ELEVATION (FT - AMSL)
Location:	B-3			G S Technician:	J. Patterson	AA
Date:	11/30-12/1/17	Depth:	35.5 ft.	Boring Method: 3.	25" ID H. S. Auger/Wireline Core	日田
Depth		ck Descriptio	n	Blow Count	Remarks	ш С
						353.0
2		CL AVEV	CUT	4		
	Light brown red br moist, organic mat fragments at 3 ft.			6 7		
4				10		
	Light brown red br moist	own CLAYEY	SILT,	7		
6	Light brown red br	own SILT, tra	ace rock	6 10		
	fragments at 6 ft.,	dry		4 5		
8	Dark brown biotite	e rich SILT, dr	У	5 7		
	Red brown SILT, st	ructure at ba	ase, dry	6 6 5		
10		-		7		
12						
14				10 13 11		
16) i	-11		
	Biotite rich very fir muscovite, with st		ce			
18						
				50/3		
20						

Project:	CC-1100		Drilling Compa	Drilling Company: Blue Ridge Drilling, Inc.			
Client:	J. H. Martin		Driller: P				
Location:	B-3		G S Technician	ELEVATION (FT - AMSL)			
Date:	11/30-12/1/17	Depth: 35.5 ft.		Boring Method: 3.25" ID H. S. Auger/Wireline Core			
Depth	Soil/Roo	ck Description	Blow Count	Remarks	ELE)		
22	Biotite rich very fin						
24			50/2				
26	25.5-26.7 ft Band	led granodiorite gneis	5	Auger Refusal @ 25.5 ft.	327.5		
28	26.727 ft Quart 27-27.9 ftGranod vertical fractures	-		Run 1 - 25.5-30.5 ft. Recovery - 60/60 inches = 100% RQD = 51.5/60 inches = 86%			
30	27.9-30.5 ft Gran	odiorite gneiss		Rock			
32				Run 2 - 30.5-35.5 ft.			
34	Biotite rich granod vertical fracture @			Recovery - 60/60 inches = 100% RQD = 47.5/60inches = 79% Rock			

Total Depth @ 35.5 ft.

Project:	CC-1100			Drilling Company: Blue Ridge Drilling, Inc.			
Client:	J. H. Martin		Driller: P. Smi		ELEVATION (FT - AMSL)		
Location:	B-4		G S Technician:	J. Patterson	N X Y		
Date:	12/1/2017	Depth: 25.5 ft		3.25" ID H. S. Auger	二品店		
Depth	Soil/	Rock Description	Blow Count	Remarks			
					335.0		
2	Light brown very fine	SAND dry	14				
	EIGHT DIOWN VCI y INC	0,1115, 0.1	35				
	White light brown ve	ry fine SAND, with structur					
4	Winte light brown ve	y mic or are) man en actur	36				
			10				
	White light brown ve	ry SILTY SAND with structu	re, dry 25				
			28				
6	Biotite rich weathere	d granodiorite, dry	47				
	Light brown dark bro	wn very fine SAND, some	25				
	structure, dry	,	50/5				
8							
		hite very fine SAND, some	50/5				
	structure, dry						
10					1		
40							
12	1						
	-						
14	Light brown very fine	SAND with structure, dry	22				
	100	a trade of a series of a series of	25				
		very fine SAND, trace quar	tz 28				
10	fragments, dry	2					
16							
40	1						
18	-						
		fine to medium SAND wit	h 50/3				
	horizontal structure,	trace rock fragments, dry					
20							

Project:	CC-1100	Drilling Company: Blue Ridge Drilling, Inc.	27
Client:	J. H. Martin	Driller: P. Smith	101 121
Location:	B-4	G S Technician: J. Patterson	A A
Date:	12/1/2017 Depth: 25.5 ft.	Boring Method: 3.25" ID H. S. Auger	ELEVATION (FT - AMSL)
Depth	Soil/Rock Description	Blow Count Remarks	
22			
24	Light gray light brown micaceous fine to medium SAND, dry	50/6	
		A Defined @ 25 5 ft	309.5

Auger Refusal @ 25.5 ft.

roject:	CC-1100			Drilling Company: B	lue Ridge Drilling, Inc.	27
Client:	J. H. Martin			Driller: P. Smit	th	ELEVATION (FT - AMSL)
ocation:	B-5			G S Technician: J. Patterson		TAN-
Date:	12/4/2017	Depth:	10 ft.	Boring Method:	3.25" ID H. S. Auger	밀
Depth	Soil/I	Rock Description	II.	Blow Count	Remarks	
						320.0
	-					
2						
	Light brown light gray	SILT, dry		13 50/6		
_				30/6		
4						
	Light brown light gray		Y SILT, dry	17		
	biotite rich from 4-4.5	o π.		50/5		
6						
	Gray brown very fine	SILT, dry		33 50/3		
				30/3		
8						
	No Return			50/0		1
10						310.0

Auger Refusal @ 10 ft.

Project:	CC-1100		Blue Ridge Drilling, Inc.	77
Client:	J. H. Martin	Driller: P. Sm		ELEVATION (FT - AMSL)
ocation:	B-6	G S Technician:	J. Patterson	VA)
Date:	12/12/2017 Depth: 50 ft.	Boring Method: 3.7	25" ID H. S. Auger/Wireline Core	E E
Depth	Soil/Rock Description	Blow Count	Remarks	
				353.0
2				
		2		
	Red micaceous CLAYEY SILT, moist	4		
4		4		
4		5		
	Bad minara CHT tanks and formation in	3		
	Red micaceous SILT, trace quartz fragments at top	3		
_	of sample, moist to dry	3 4		
6		3		
		3		
	Dark brown light brown micaceous SILT, dry	3		
8		3		
0		2		
	Light brown light gray micaceous SILT, trace quartz	3		
	fragments, dry	3		
10	in agriculta, any	3		
12				
14		4		
	Light gray light brown micaceous SILT, dry	6		1
		7		
				5
16				
				/
	-			
18				0
10				Y
		6		l l
	Light gray light brown micaceousSANDY SILT, dry	11		
	1-0 0. 07 110 0. 0. 0. 11 11 0 0	17		

roject:	CC-1100	Drilling Company: Blue Ridge Drilling, Inc.	70
lient:	J. H. Martin	Driller: P. Smith	ELEVATION (FT - AMSL)
ocation:	B-6	G S Technician: J. Patterson	- AN
ate:	12/12/2017 Depth: 50 ft.	Boring Method: 3.25" ID H. S. Auger/Wireline Core	日間に
Depth	Soil/Rock Description	Blow Count Remarks	-
22			
24	Light gray light brown SANDY SILT, weathered	29	
	granite at base, dry	50/5	
26			
1			
28			
	Light gray light brown micaceous SANDY SILT with	50/2	
30	quartz fragments, dry		
32	-		
34		NR	
36			
38			
		NR	
40			313.0

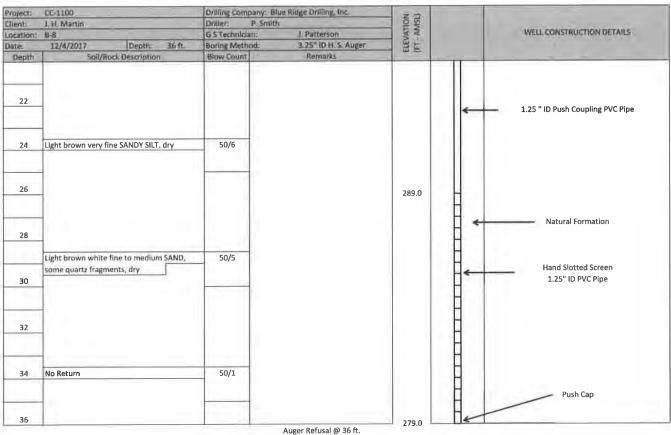
Auger Refusal @ 40 ft.

Project:	CC-1100	Drilling Compa	ny: Blue Ridge Drilling, Inc.	23
Client:	J. H. Martin	Driller: P	. Smith	OF ASS
Location:	B-6	3-6 G S Technician:		- A
Date:	12/12/2017 Depth: 50 ft.	Boring Method	: 3.25" ID H. S. Auger/Wireline Core	ELEVATION (FT - AMSL)
Depth	Soil/Rock Description	Blow Count	Remarks	
	Biotite rich banded GNEISS with quartz, dry	4		
42	Massive quartz intrusion, dry		Run 1 - 40-45 ft. Recovery - 52/60 inches = 87% RQD = 44/60 inches = 73%	
44	Highly weathered biotite rich SCHIST, dry		Rock	
	Highly weathered SCHIST, dry	IST, dry Rock		
46	Weathered biotite rich GNEISS with quartz, dry			
48	Biotite rich GNEISS with quartz banding, pyrite noted throughout, dry		Run 2 - 45-50 ft. Recovery - 52/60 inches = 87% RQD = 35.5/60 inches = 59% Rock	
50				303.0

Total Depth @ 50 ft.

roject	CC-1100	Drilling Company: 8	lue Ridge Drilling, Inc.	Stic	kup: 1.3 ft.	
lent:	J. H. Martin	Deiller: P. Smit		2 2	¥	
scation	8-7	G S Technician:	J. Patterson	ELEVATION (FT. AMSL)	K	WELL CONSTRUCTION DETAILS
ole.	.12/4-5/2017: Depth: 55 ft.	Baring Method	3.25" ID R. S. Auger	3 5		
Depth	Sail/Rock Description	Blow Count	Remarks	- W -		
				352.0		Push Cap
2						
	Red brown micaceous SILT, moist	5 4 6				
4		8				
	Red brown SILT trace quartz fragments, dry	5 5 7				
6		8 5				
	Light brown SILT, trace structure, dry	6 4				
8	Light brown white very fine SANDY SILT, dry	3				
	Light brown light gray SANDY SILT, dry	3 6 7			*	1.25 " ID Push Coupling PVC Pipe
10		4				
12						
14	Light gray white very fine SANDY SILT, dry	5			-	Natural Formation
	Light gray light brown fine to medlum SAND, dry	5				
16				1 1		
18						
20	Light gray white very fine SANDY SILT, dry	7 11 10				

Project.	CC-3100	Drilling Company: Bi		2.5	
lent.	J. H. Martin	Driller: P. Smit		FLEVATION (FT - AMSL)	and a transmission of
cation	8-7	G S Technician:	J. Patterson	N S S	WELL CONSTRUCTION DETAILS
ite	12/4-5/2017 Depth 55 ft.	Boring Method:	3.25" ID H. S. Auger	월도	
Depth	Soll/Rock Description	Blow Count	Remarks	7.7	
22	-				1.25 " ID Push Coupling PVC Pipe
24		7			
	Light brown light gray micaceous very fine SANDY	12			
	SILT, trace rock fragments at top, dry	14			
26					
	4				Natural Formation
28					Transfer of the state of the st
20					
	Light brown red black micaceous very fine SANDY	9			
	SILT, dry White light gray very fine SANDY	31			
30	SILT with rock fragments, dry	25			
32	+				
					H 18
34		20			
	White light brown micaceous SANDY SILT, dry	12			
		23			
36	+				
	+				
38					
50					
		21			
	Light brown white light gray black micaceous very	36			
40	fine SANDY SILT, dry	50/3			



roject:	CC-1100		Blue Ridge Drilling, Inc.	22		
lient:	J. H. Martin	Orilleri P. Se		ELEVATION (FT. AMSI)		
ocation.	8-7	G S Technicians	J. Patterson	- S 4	WELL CONSTRUCTION DETAILS	
tates	12/4-5/2017 Depth: 55 ft	Boring Method:	3.25" ID H. S. Auger			
Depth	Soll/Rock Description	Blow Count	Remarks			
42				312.0	Hand Slotted Screen 1.25" ID PVC Pipe	
44	Light brown light gray very fine SANDY SILT with rock fragments at the top, saturated	50/5	Saturated @ 43.5 ft.	308.5		
46					■ Natural Formation	
48						
	Light brown light gray biotite rich very fine SANDY	50/6				
50	SILT, saturated				Hand Slotted Screen 1 25" ID PVC Pipe	
52						
54	No Return, saturated spoon	50/0			Push Cap	
55				297.0		

roject:	CC-1100	Drilling Company: Bi	tie Ridge Drilling, Inc.	2 - 5	tickup: 1.0 ft.	
ient	J. H. Martin	Driller: P. Smitt		ELEVATION (FT - AMSU)	<u>\psi}</u>	
cation:	B-8	G S Technician:	1. Patterson	4.8	1	WELL CONSTRUCTION DETAILS
ite:	12/4/2017 Depth: 36 ft.	Boring Method:	3.25" ID H. S. Auger	3 5		
Depth	Soil/Rock Description	Blow Count	Remarks	- u -		
				315.0		
						Push Cap
2				4 1		
		3				
	Brown light brown SILT, some CLAYEY	4		1	11 1	
	SILT from 2.3-2.7 ft., moist to dry	4				
4		8				
		8				
	Red brown light brown SILT with biotite	9		1 1		
	banding, trace quartz rock fragments, dry	16				
6		15				
		9				
	Light brown SILT, trace quartz fragments,	11				
	dry	10				
8		13			- 11 1	
		19				
	Light brown SANDY SILT with micaceous	18				
	banding, dry	13			+	1.25 " ID Push Coupling PVC Pipe
10		16				
12						
	-					
14	Light brown SILT with micaceous banding,	8				Natural Formation
	dry	12				Natural Formation
	Yellow brown white very fine SAND, dry	50/3				
16						
16						
_	+					
18						
18						
	Light brown brown mlcaceous SILT, trace	13				
	quartz fragments, structure, dry	18				
20	quartz rragments, structure, dry	17				
ZU		1/				

lient: ocation:	J. H. Martin				
ocation:			Driller: P. Sn		ELEVATION (FT - AMSL)
	8-9		G S Technician:	J. Patterson	- × ×
ate:	12/1/2017	Depth: 21 ft.		3.25" ID H. S. Auger	1 1 1 1
Depth	Soil/	Rock Description	Blow Count	Remarks	
					310.0
	+				
2					
			3		
	_	wn micaceous SANDY SILT			
	moist		7		P
4			16		1
	Brown dark brown SI	LT with horizontal structur	re, 27		1
	moist		50/2		
					HA .
6					1
	White light gray light	brown black very fine SAN			
	dry		50/5		
0					
8	Links annu links kannu	n black fine SANDY SILT wi	th 44		
		I black line SANDT SILI WI	50/2		
	structure, dry		50/2		
10					1
10	+		-		1.
	4				
12					
	1				
14		n black fine SANDY SILT wi			
	structure, dry		9		
			20		
16					
	1				
18					
20					
	Light brown light gra	y fine SANDY SILT, dry	50/3		
20					

Project:	CC-1100		Drilling Company: E	llue Ridge Drilling, Inc.	7-
Client:	J. H. Martin		Driller: P. Smi	th	NSI.
Location:	B-9	27100	G S Technician:	J. Patterson	AA A
Date:	12/1/2017	Depth: 21 ft.	Boring Method:	3.25" ID H. S. Auger	ELEVATION (FT - AMSL)
Depth	Soil	Soil/Rock Description		Remarks	# 0
21					289.0
				Auger Refusal @ 21 ft.	205.0

Project:	CC-1100	Drilling Company: Blue	Ridge Drilling, Inc.	Stickup: 1.0 ft	
Client	J. H. Martin	Driller: P. Smith		FI AMSE)	
Location:	8-10	G S Technicians	J. Patterson	44	WELL CONSTRUCTION DETAILS
Date	12/5/2017 Depth: 47 ft.	Boring Method	3.25" TO H. S. Auger	9 6	
Depth	Soil/Rock Description	Blow Count	Remarks		
				325.0	Push Cap
2					
	light brown light gray very fine SANDY SILT, trace rock fragments & structure at	11 12 15			
4	base, dry	14			
	Light brown light gray SILT with horizontal structure, dry	20 26 15			
6	structure, dry	14			
0	Light gray light brown very fine SANDY SILT, dry	10			
	Light gray light brown micaceous SILT with	12		1 1 11	
8	and, some structure, dry	16			
	Light gray light brown very fine SANDY SILT, dry	28 50/5			1.25 " ID Push Coupling PVC Pipe
10					
12					
-					
14	Black white light brown weathered granodiorite with gneissic banding, dry	13 17		←	Natural Formation
	White light gray very fine SANDY SILT with	19			
	structure, dry				
16					
18					
	White light gray very fine SANDY SILT with structure, dry	6 8			
20	Light brown micaceous Silt, dry	11			

roject:	CC-1100	Drilling Company: Bla		22	
ient	I. H. Martin	Driller, P. Smith		ELEVATION (FT - AMSL)	WELL CONSTRUCTION DETAILS
cation:		G.5 Technician:	1. Patterson	59	WELL CONSTRUCTION DETAILS
ite:	12/5/2017 Depth: 47 ft.	Boring Method:	3.25" ID H. S. Auger	- BE	
Depth	Soll/Rock Description	Blow Count	Remarks		II
22					
24	Light brown white micaceous SILT, dry	13 16 28			Natural Formation
26		20			
28					
30	Light brown light gray white micaceous SILT with plagioclase feldspar from 28.6- 28.7 ft., with structure dry	30 50/6			1.25 " ID Push Coupling PVC Pipe
32				293.0	
34	Black white micaceous SILT, moist to saturated @ 34 ft.	50/6	Saturated @ 34 ft	291.0	Natural Formation
36					
38					Hand Slotted Screen 1.25" ID PVC Pipe
40	Dark brown brown gray black micaceous SILT with banding, saturated	20 48 50/4			

roject:	CC-1100	Drilling Company: Blue Ridge Orilling, Inc.	23	
Client	J. H. Martin	Driller: P_Smith	ELEVATION (FT - AMSL)	4470 PERSONAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PART
location.	B-10	G.S.Technician: 1. Patterson	A A	WELL CONSTRUCTION DETAILS
Dates	12/5/2017 Depth: 47 ft.	Boring Method: 3.25" ID H. S. Auger		
Depth	Soll/Rock Description	Blow Count Remarks	П	
42			-	Natural Formation
44	Dark gray gray light green black micaceous SILT, saturated	50/6	-	Hand Slotted Screen
46				Push Cap
47			278.0	

Project:	CC-1100		ue Ridge Drilling, Inc.	- 27
Client:	J. H. Martin	Driller: P. Smiti		ELEVATION (FT - AMSL)
ocation:	B-11	G S Technician:	J. Patterson	- X X
Date:	12/5/2017 Depth: 40 ft.	Boring Method:	3,25" ID H. S. Auger	一当正
Depth	Soil/Rock Description	Blow Count	Remarks	
				310.0
2		1		
		3 5		
	-	5		1
	Light have a sign of CHT regist	7		1
4	Light brown micaceous SILT, moist	5		1
		7		
_	4	11		
_	Vellow brown your fine CANDY SILT day	11		
6	Yellow brown very fine SANDY SILT, dry Light brown white SILT, dry	42		
	Light gray white fine SAND with quartz fragments,	46		
		20		
0	dry Brown light brown red brown black weathered	12		
8	granodiorite, dry	13		
	granduonte, dry	14		
	Light brown red brown SILT, dry	14		1
10	Light brown red brown sich, dry	14		
10		17		
12				
	7			
14	Light gray light brown yellow brown micaceous	10		
	very fine SANDY SILT, structure increasing with	12		
	depth, dry	12		
16				
18				
	Light brown light grow black weathered grandicates	25		
	Light brown light gray black weathered granodiorite with gneissic banding, dry	50/4		
	with gheissic banding, dry	30/4		

Project:	CC-1100		Drilling Company: Bl		27
lient:	J. H. Martin		Driller: P. Smith		TIOL
ocation:	B-11		G S Technician:	J. Patterson	ELEVATION (FT - AMSL)
ate:	12/5/2017	Depth: 40 ft.	Boring Method:	3.25" ID H. S. Auger	日間に
Depth	Soil/Rock D	escription	Blow Count	Remarks	
22					
24	Light brown light gray black	weathered granodiorite	8		
	with gneissic banding, dry		12		
			17		
26					1
28	<u>-</u>				
	Light gray black very fine mi	caceous SANDY SILT,	50/4		
30	with structure, dry				
32					
34	Light gray black micaceous S	SILT (weathered gneiss),	50/3		
36					
38					
	No Return		50/1		
40	T				270.0

Project:	CC-1100	Drilling Company: Blue Ridge Drilling, Inc.		23			
Client	J. H. Martin			Driller: P. Smith		ATTON AMSE)	The same of the sa
Location:	B-14			G S Technician:	J. Patterson		WELL CONSTRUCTION DETAILS
Date:	12/7/2017	Depth:	42.5 ft.	Boring Method:	3.25" ID H. S. Auger	# # #	
Depth	Soil/Re	ock Description	1	Blow Count	Remarks		
							1.25" ID Hand Slotted PVC Screen
42						277.5	Push Cap
	-			77	Auger Refusal @ 42.5 ft.	277.3	

ojact:	CC-1100	Drilling Company. Blue	Ridge Drilling, Inc.	- 22	Stickup: 1,2 ft.	
ent	J. H. Martin.	Driffer: P. Smith		ELEVATION (FT - AMSL)	LIK.	WELL CONSTRUCTION DETAILS
cation:		G S Technician:	1. Patterson	- 55		WELL CONSTRUCTION OF TAILS
ate	12/6/2017 Depth: 45.5 ft	Boring Method	3,25" ID H. S. Auger	HE		
Depth	Soil/Rock Description	Blow Count	Remarks			
				330.0		Push Cap
	-					rusii cap
2						
4	Red brown CLAYEY SILT, moist	8			1 11 1	
	THE STOWN ELECTRIC STEET THOSE	7			1 11 1	
	Red brown micaceous SILT, moist	7				
4		8			1 11 1	
	Red brown CLAYEY SILT, moist	4			1 11 1	
	Red brown yellow SILT with horizontal	6				
	structure, dry	8				
6	White black micaceous Silt with structure,	8			1 11 1	
	dry	4			1 11 1	
	Light brown micaceous SILT, dry	5				
		7			1 11 1	
8		3 4			1 11 1	
	Light brown SILT, trace quartz fragments	6			1 11 1	
	at 8.5 ft., horizontal structure, dry	6				1.25 " ID Push Coupling PVC Pipe
10	at 8.5 ft., notizontal structure, dry	5				2123 13 1 231 232 211 31 1 2 1 1 2
10						
					1 11 1	
	1				1 11 1	
12					1 11 1	
					1 11 1	
					1 11 1	
					1 11 1	
14	Light brown light gray SILT with sand, biotite	4				Natural Formation
	rich at base with horizontal structure, dry	3			1	Natural Formation
-		4			1 11 1	
16						
10						
18						
	Light brown white micaceous SILT, dry	7				
		10				
20	White pink light brown very fine SANDY	9				

rojecti	CC-1100		ue Ridge Brilling, Inc.	- 22	
lieot:	J. H. Martin	Driller: P. Smith		ELEVATION (FT - AMS)	WELL CONCERNICENCE DETAILS
ocation:		G 5 Technician:	J. Patterson	NA A	WELL CONSTRUCTION DETAILS
ate:	12/6/2017 Depth: 45.5 ft.	Boring Method:	3.25° ID H. S. Auger	1 2 2	
Depth	Soil/Rock Description	Blow Count	Remarks		11
22				310.0	
24	Light brown light gray SILT with pink plagloclase banding at 24 ft., dry	21 13 12			Natural Formation
26			Saturated @ 27 ft.	303.0	
28			2		Ħ
	Light brown light gray white black SILT with horizontal banding, trace quartz	12 18			1.25" ID PHand Slotted PVC Screen
30	fragments at base, saturated at 27 ft. (seen on rod)	23			
32					
34	Light brown light gray white black SILT with horizontal banding, trace quartz fragments at base, saturated	12 12 25			Natural Formation
36					
38					
40	Light brown light gray white black SILT with horizontal banding, trace quartz fragments at top, saturated	50/5			

rojett:	CC-1100		Drilling Company: Blue	Ridge Drilling, Inc.	27	
Jient:	J. H. Martin		Driller, P. Smith		25.70	
ocation:	8-12	_	G S Technician:	1 Patterson	2.5	WELL CONSTRUCTION DETAILS
Date:	12/6/2017	Depth: 45.5 ft.	Boring Method:	3.25" ID H. S. Auger	ELEVATION (FT - AMSL)	
Depth	Soil/Rock D	escription	Blow Count	Remarks		
42	Dark brown black micac saturated	eous SILT _e	50/3			Natural Formation 1.25" ID Hand Slotted PVC Screen Push Cap
			12.00	Auger Refusal @ 45 5 ft.	284.50	14

Project:	CC-1100		Blue Ridge Drilling, Inc.	77
Client:	J. H. Martin	Driller: P. Sm	ELEVATION (FT - AMSL)	
Location:	B-13	G S Technician:	J. Patterson	VAT A
Date:	12/6-7/2017 Depth: 26 ft.		5" ID H. S. Auger/Wireline Core	11 11
Depth	Soil/Rock Description	Blow Count	Remarks	
				305.0
2				
		3		
	Light brown brown CLAYEY SILT, trace organic	5		
	matter at the top, wet	5		
4		6		
		20		
	Light brown light gray micaceous SILT with rock	17		
	fragments at 4-5 ft., dry	16		
6		21		
		7		
	Light brown micaceous SILT, dry	10		
		17		
8		19		
		14		
	Light brown micaceous SILT, dry	14		
10		16		
10		10		
12 _				
	-			
14	Light brown SILT with quartz fragments, dry	50/4		
	Light brown white fine to medium SAND with silt,			
	dry			
16				
16	-			
18]			
	Light brown light gray micaceous SILT with biotite	32		
	Tright prown light Blay inicaceous sich with plotite			
	banding, dry	35		

Depth: 26 ft. Description	G S Technician:	J. Patterson 3.25" ID H. S. Auger/Wireline Core	ELEVATION (FT - AMSL)
	Boring Method: 3	3.25" ID H. S. Auger/Wireline Core	EEVAT
			当日
Description	Blow Count		
		Remarks	
trace biotite mica,	50/3		
us SILT, dry		Run 1: 25-26 ft. Recovery - 12/12" = 100% RQD - 0/12" = 0%	280.0 279.0
	, trace biotite mica, us SILT, dry		Run 1: 25-26 ft. Recovery - 12/12" = 100%

Auger Refusal@ 25 ft. Rock Core Lock Up @ 26 ft.

rojecti	CC-1100	Drilling Company: Blue R	lidge Orilling, Inc.	20	Stickup: 1.5 ft.	
lient:	I. H. Martin	Driller: P. Smith		ELEVATION (FTAMSL)	¥	
ocation	8-14	G S Technician:	J. Patterson	14.4		WELL CONSTRUCTION DETAILS
late:	12/7/2017 Depth: 42.5 ft.	Boring Method:	3.25° ID H. S. Auger	景坛		
Depth	Soil/Rock Description	Blow Count	Remarks	-		
				320.0		
						Push Cap
2		5				
		6				
	Light brown micaceous SILT, moist to dry	11				
4		14				
		8				
	Light brown red brown micaceous SILT	20		4 0		
	structure at the base, dry	28				
6		26				
		16				
	Red brown light gray SILT with structure,	18				
	trace biotite mica at base, dry	17				
8		23				
	Light brown SILT, trace rock fragments,	24			11 11 11	
	horizontal structure, dry	29			K	1.25 " ID Push Coupling PVC Pipe
10		50/4				
				1 1		
12						
14	Light brown light gray black SILT, trace	32				
	rock fragments at 14 ft., horizontal	43			(t	Natural Formation
	structure, dry	41			12.38	
		4				
16						
18						
	end of the second of the secon					
	Light brown micaceous SILT, horizontal structure, dry	35 50/3				

rojecti	CC-1100	Drilling Company: Blue	Ridge Orilling, Inc.	3.8	
lient: ocation:	I.H. Martin	Oriller: P. Smith	J. Patterson	ELEVATION (FT - AMSL)	WELL CONSTRUCTION DETAILS
ocation.	12/7/2017 Depth: 42.5 ft.	Boring Method:	3.25" ID H. S. Auger	- 33	Trace contains a little
	Soil/Rock Description	Blow Count	Remarks	- ##	
Depth	SOH/MAR DESCRIPTION	Blow Count	TAZ (Half 2-)		TI
22					
111	Light brown light gray micaceous SILT, dry	50/2			
24					
				1 1	Natural Formation
26					
28					
20	Light brown micaceous SILT, dry	27			
_	Red brown SANDY SILT, trace quartz	50/5			1.25 " ID Push Coupling PVC Pipe
30	fragments, dry	3073		1 1	
32					
				287.50	H
	Brown dark brown micaceous SANDY	14		11 11	H
34	SILT, dry	25 28		1 1	H
34		28		1 1	Natural Formation
36					H
					H
38					B
	Red brown black micaceous SILT, wet to	20	Saturated @ 39 ft.	281.0	H
40	saturated Red brown micaceous SANDY SILT, saturated	50/6	33 Tt.	2310	H

roject:	CC-1100	Drilling Company: 81	ue Ridge Drilling, Inc.	70
lient:	J. H. Martin	Driller: P. Smith	n	NSL ASL
ocation:	B-15	G S Technician:	J. Patterson	ELEVATION (FT - AMSL)
ate:	12/8/2017 Depth: 11 ft.	Boring Method:	3.25" ID H. S. Auger	1 1 1
Depth	Soil/Rock Description	Blow Count	Remarks	
		1		283.0
2				
	Light brown micaceous SILT, dry	4		
	Dark gray dark brown biotite rich SILT with	8		
	structure, dry	20		
4		45		
		30		
	Light brown light gray micaceous SILT, dry	39		
6		50/6		
	Gray brown white micaceous SILT, dry	29		
		40		
	Gray brown white micaceous SANDY SILT, trace	50/3		
8	rock fragments, dry	25		
	Dark gray brown biotite rich micaceous SILT, trace	35		1
	rock fragments, dry	50/4		
10				
			Auger Refusal @ 11 ft	272.0

Auger Refusal @ 11 ft.

Project:	CC-1100	Drilling Company: Bl	23	
Client:	J. H. Martin	Driller: P. Smit		ELEVATION (FT - AMSL)
Location:	B-16	G S Technician:	J. Patterson	AA
Date:	12/8/2017 Depth: 30 ft.	Boring Method:	3.25" ID H. S. Auger	- H
Depth	Soil/Rock Description	Blow Count	Remarks	-
2		2		
		3		
	Red brown micaceous SILT, dry	3		1
4		5		
		4		
		6		
	Red brown micaceous SILT, dry	5		
6		7		
	Light brown micaceous SILT, dry	6		
		8		
	White light brown micaceous SILT, dry	5		
8		7		
		6		
	White light brown micaceous SILT, dry	7		
	, ,	6		
10		7		
				10
	-			
12				
14				
14		6		
	Light brown light gray micaceous SILT, dry	7		
		8		
16				
	1			W.
	-			W
18				
10	-			
		6		
	Light brown light gray micaceous SILT, some whit			
20	plagioclase, dry	10		IV.

Project:	CC-1100		Drilling Company: B	ue Ridge Drilling, Inc.	20
Client:	J. H. Martin		Driller: P. Smit	h	ELEVATION (FT - AMSL)
ocation:	B-16		G S Technician:	J. Patterson	AN
Date:	12/8/2017 Depth: 3	30 ft.	Boring Method:	3,25" ID H. S. Auger	HE
Depth	Soil/Rock Description		Blow Count	Remarks	12 minus
22					313.0
22					
	Light brown brown gray micaceous SILT, to	race rock	39		
24	fragments, dry		50/3		
26					
28					
	Light brown light gray micaceous SANDY S	SILT, dry	50/3		
30				Auger Reusal @ 30 ft	283.0

Auger Reusal @ 30 ft.

Project:	CC-1100	Drilling Company: Blue	Ridge Orilling Inc.	Sti	ckup; 2.2 ft.	
Client	J. H. Martin	Driller: P. Smith		ELEVATION (FT - AMSU)	4	
Location	B-17	G 5 Technician:	J. Patterson	4 4		WELL CONSTRUCTION DETAILS
Date:	12/12/2017 Depth: 47.0 ft.	Boring Method:	3.25" (D.H. S. Auger	9 =		
Depth	Soll/Rock Description	Blow Count	Remarks	W		
				380.0		Push Cap
_ 2					11 1	
4	Red brown micaceous SILT, moist	4 7 11 14				
		5			11 70	
	Red brown micaceous SILT, trace quartz	8				
(fragments at top of sample, moist	11			11. 117	
6		13		1 1	11 11	
		4			M 10	
	Red brown micaceous SILT, dry	4			11 11	
		4		4 40	- 11 - 11 -	
8		4			14 15	
	Red brown light brown micaceous SILT with	3 4		1 1		1.25 " ID Push Coupling PVC Pipe
10	sand, dry	5 7				1.25 " ID Push Coupling PVC Pipe
		1				
12						
14	Red brown light brown micaceous SILT,	3				
	structure at base, dry	3 4			1	Natural Formation
16						
16						
18						
	Red brown micaceous SILT, dry	3 4				
20	Brown black micaceous SILT, dry	3				

roject:	CC-1100	Drilling Company: 8		- 22	
ientr	J. H. Martin	Oriller: P. Smith G. S. Technician: 4. Patterson		ELEVATION (FT - AMSE)	WELL CONSTRUCTION DETAILS
cation	8-17			32	WELL CONSTRUCTION DETAILS
Date:	12/12/2017 Oepth: 47.0 ft.	Boring Method:	3.25" ID H. 5; Augns	- 3E	
Depth	Soil/Rock Description	Blow Count	Remarks		
22	Red brown micaceous SILT, dry	3			
		4			
24	Dark brown SANDY SILT. dry	6			
					Natural Formation
26					
				353.0	H
28				1 4	H I
		12			H
30	Light gray gray micaceous SANDY SILT, dry	18 14			1.25" ID Hand Slotted PVC Screen
					H
32					H I
	Light brown light gray gray black	10		1 1	H
	micaceous SANDY SILT (weathered gneiss)	19	Saturated @ 33.5 ft.	346.5	
34	with quartz fragments, saturated @ 33.5 ft.	25	Saturated @ SS.S It.	340.5	Natural Formation
					Natural Formation
36					H
					H
38					H
	Light brown light gray gray black	40			Н
	micaceous SANDY SILT (weathered gneiss)	50/4			H
40	with quartz fragments, saturated				

CC-1100	Drilling Company: Blue	Ridge Drilling, Inc.	7.7	
J. H. Martin	Driller: P. Smith		_ G (S)	Company of the last
8-17	G S Technician:	J. Patterson	4.4	WELL CONSTRUCTION DETAILS
12/12/2017 Depth: 47.0 ft.	Boring Method	3 25" ID H. S. Auger	当位	
Soil/Rock Description	Blow Count	Remarks		
			4	1.25" ID Hand Slotted PVC Screen
				4
Biotite rich SANDY SILT with quartz fragments, saturated (minor anticlinal with arch towards top of spoon)	27 50/3			
			1 I H	Push Cap
	J. H. Martin 6-17 12/12/2017 Depth: 47.0 h. Soil/Rock Description Biotite rich SANDY SILT with quartz fragments, saturated (minor anticlinal	J. H. Martin B-17 12/12/2017 Depth: 47.0 h. Boring Method: Soil/Rock Description Biotite rich SANDY SILT with quartz fragments, saturated (minor anticlinal 50/3	J. M. Martin 6-17 12/12/2017 Depth: 47.0 ft. Boring Method: 3.25" 10 H. 5. Auger Soil/Rock Description Blow Count Remarks Biotite rich SANDY SILT with quartz 27 fragments, saturated (minor anticlinal 50/3	J. H. Martin B-17 Soll/Rock Description Biotite rich SANDY SILT with quartz fragments, saturated (minor anticlinal) Driller: P. Smith G. Technician: J. Patterson 3 25" 10 H. S. Auger Blow Count Remarks P. Smith G. Technician: J. Patterson Blow Count Remarks

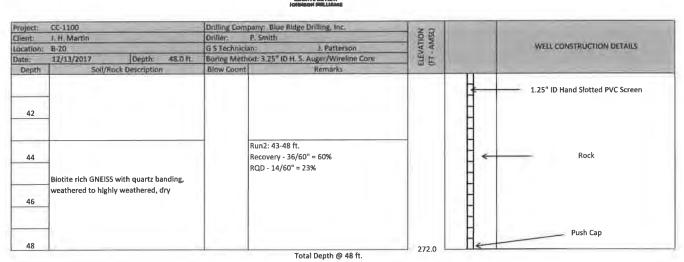
rojecti	CC-1100 Drilling Company: Blue Ridge Drilling Inc.		20	Stickup: 0.8 ft.	
lent	H. Martin Driller: P. Smith		Silve Core Silve Core (FT - AMS)	<u> </u>	
cation:	8-18	18 G S Technician: I. Patterson			WELL CONSTRUCTION DETAILS
ate:	12/14/2017 Depth: 40.0 ft.	Boring Method: 3.25" ID H. S. Auger/Win	sline Core		
Depth	Soft/Rock Description	Blow Count Remarks			
			368.0		Push Cap
2					
	Red brown SILT, moist	3 7 9			
4		13			
	Red brown SILT, trace rock fragments, moist	5 12 17			
6		20			
	Red brown SILT, trace rock fragments, moist	8 13 12			
8	linoist .	12			
	Red brown light gray SILT, dry	5 10 12		-	1.25 " ID Push Coupling PVC Pipe
10		14			
12					
14	Red brown dark brown micaceous SILT, structure at base of sample, dry	2 2 3	353.0	-	Natural Formation
16					
				H	
18				F	1.25" ID Hand Slotted PVC Screen
	Red brown dark brown micaceous SHT,	2 4			
20	Light gray SILT, wet	8			

roject	CC 1100 Drilling Company: Blue Bidge Drilling, Inc. J. H. Martin Driller: P. Smith			ELEVATION (FT - AMSL)		
enti	J. H. Martin 8-18	G S Technician: J, Patterson		- EN	WELL CONSTRUCTION DETAILS	
cation:			3.25" ID H. 5. Augur/Wireline Core	1 2 1	100000000000000000000000000000000000000	
te:	12/14/2017 Depth: 40.0 ft. Soll/Rock Description	Blow Count	Remarks	一 年 上		
Depth	SOMPROCK DESCRIPTION	DIOW COUNT	Remarks			
			Saturated @ 21 ft.	347.0	8	
22						
	Light brown light gray micaceous	7			Ц	
	weathered GNEISS with quartz banding.	41			H	
24	saturated (slight anticlinal folding at top	50/1		1 0 3	H	
	of sample				Natural Formation	
					H INALUIAI FOI MACION	
					H	
26	4				H	
					H	
_	4				H	
28		1 1			H I	
20					Н	
	Red brown dark gray SANDY SILT with	50/2		3	H I	
	quartz fragments, saturated	1			1.25" ID Hand Slotted PVC Screen	
30	Harrist comparison and an action			338.0		
	30-30.7 ft Fine grained banded GNEISS		Auger Refusal @ 30 ft.	338.0		
	with blotite & muscovite, minor fractures					
	at 45° & 90° (water staining of					
32	fractures noted), saturated					
	30.7-31.6 ft Muscovite rich SCHIST,		Run 1: 30-35 ft.			
	trace quartz fragments at 31.2 ft. & 31.5 ft		Recovery - 30/60" = 50%			
-	saturated		RQD - 8/60" = 13%			
34	21.5-32.5 ft Biotite rich SCHIST with					
	quartz fragments, some muscovite,				Rock	
	saturated				Н Г	
	35-36.3 ft Weathered biotite rich				H	
36	GNEISS with water stained folding,				H	
	saturated				He 1 2511 10 11 - 4 01-14 - 4 010 5	
	36.3-36.4 ft Weathered quartz, sat.		Run 2: 35-40 ft	0	1.25" ID Hand Slotted PVC Screen	
	36.4-37.1 ft Biotite rich quartz banded		Recovery - 61 5/60" = 103%		H	
38	GNEISS with minor stained fractures, sat.		RQD - 41/60" = 68%		H	
	37.1-37.2 ft Highly weathered biotite				H	
	rich GNEISS, saturated				H Purch Can	
	37.2-40 ft - Biotite rich GNEISS with				Push Cap	
40	some folding & quartz banding, sat.		Total Depth @ 40 ft.	328.0	15	

Project:	CC-1100		Drilling Company: Bl	Z 22		
Client:	J. H. Martin		Driller: P. Smit		ELEVATION (FT - AMSL)	
ocation:	B-19		G S Technician:	J. Patterson	- X X	
Date:	12/13/2017 Depth:	46.5 ft.	Boring Method:	3.25" ID H. S. Auger	出品に	
Depth	Spil/Rock Descripti	on	Blow Count	Remarks		
					358.0	
					111	
2			5			
			8			
	Light gray light brown SILT, dry		13			
4	1		15			
-			10		T.	
			22		1	
	Light gray light brown SILT with san	d, dry	43			
6			50/3			
	Light gray light brown SILT, dry		50/2			
	8 8 7 8 7 7					
	1					
8						
			25		16	
	Light gray light brown micaceous SI	LT, trace	29			
	structure at base, dry		50/5			
10						
	_					
12						
12	-		11			
14	Light gray light brown micaceous SI	LT, trace	28			
	structure at base, dry		50/2			
16	1					
	1					
18	-					
	Links hanna light group migran and Cl	IT day	50/6			
-	Light brown light gray micaceous SI	LI, UIY	30/6			
20			1 4 4			

Project:	CC-1100			Drilling Company: Bli		- Z =	
lient:	J. H. Martin			Driller: P. Smiti		ELEVATION (FT - AMSL)	
ocation:	B-19			G S Technician:	J. Patterson	N A	
Date:	12/13/2017		46.5 ft.	Boring Method:	3.25" ID H. S. Auger	出出	
Depth	Soil	/Rock Description		Blow Count	Remarks		
22							
24	Dark brown biotite	ich SANDY SILT, horiz	rontal	50/5			
27	structure, dry						
26							
28							
	Dark brown biotite structure, dry	rich SANDY SILT, horiz	ontal	33 50/3			
30	Light brown SANDY	SILT, dry					
32							
34	Light brown brown	SANDY SILT, dry		50/3			
36							
38							
	Light brown brown	SANDY SILT, dry		50/1			
40							

Project:	CC-1100		Drilling Company: B	lue Ridge Drilling, Inc.	27
Client:	J. H. Martin		Driller: P. Smit	th	ELEVATION (FT - AMSL)
ocation:	B-19		G S Technician:	J. Patterson	
Date:	12/13/2017	Depth: 46.5 ft.	Boring Method:	3.25" ID H. S. Auger	E E
Depth	Soi	I/Rock Description	Blow Count	Remarks.	
42					
44	Light brown brown	SANDY SILT, dry	50/1		
46					
				Auger Refusal @ 46.5 ft.	311.5



rojecti	CC-1100			27 5	tickup: 0.6 ft.	
lient:	I. H. Martin	Driller: P. Smith G3 Technician: J. Patterson		ELEVATION (FT - AMSL)	¥	
cuttore	8-20			NA.		WELL CONSTRUCTION DETAILS
ate:	12/13/& 15/2017 Depth: 48.0 ft	Boring Method: 3.25"	ID H. S. Auger/Wireline Core	3 4		
Depth	Soil/Rock Description	Blow Count	Remarks		1000	
				320.0		
						Push Cap
2						
		14		1 1		
	Gray micaceous SILT with quartz	30		1 1	- 11	
	fragments at base, dry	50/4		1 1		
4						
	Light brown SILT, some quartz fragments,	15				
	dry	50/5			11 1	
					11 1	
6		10			11 1	
	Red brown SANDY SILT, trace quartz	13			11 1	
	fragments. dry Black brown white micaceous SANDY SILT	25 26			- 11 1	
8	with quartz fragments, dry	37				
8	Light gray SANDY SILT, trace quartz	15				
	fragments at top of sample, dry	35			H I -	
	Tragments at top or sample, ary	50/4			<	1.25 " ID Push Coupling PVC Pipe
10						
10				7		
					11 1	
					11 1	
- 12					11 1	
					- 11 - 1	
14	Light gray gray micaceous SANDY SILT	33		- 14		- Natural Formation
	with quartz fragments, dry	50/5			-	— Natural Formation
				All I	11 1	
				1 1		
16				71 T	11 1	
18						
19						
	Brown gray black micaceous SILT, trace	40				
	Intown Pray plack illicaccoup pici, trace					
	quartz fragments, dry	43				

rojecti	CC-1100			27	
lient.	J. H. Martin			ELEVATION (FT - AMSL)	The same state of the same
ocution:	B-20	G S Technician:	J. Patterson	A A	WELL CONSTRUCTION DETAILS
late!	12/13/& 15/2017 Depth: 48.0 ft.	Boring Method: 3.25" ID H. S. Auger/Wireline Core		35 12	
Depth	Soil/Rock Description	Blow Count	Remarks		
22	Light brown SANDY SILT with quartz fragments at the top of the sample, with	19 50/3			
24	structure dry	30,5			11 1
					Natural Formation
26					
28					
30	Light brown gray black micaceous SILT, dry	50/6			1.25 " ID Push Coupling PVC Pipe
32					
		- 10		1 1	
	Light brown light gray micaceous SILT, dry	12		287.0	H
		50/5			H
34					
36					H
30					1.25" ID Hand Slotted PVC Screen
38	Quartz rich GNEISS with pink plagioclase feldspar		Auger refusal @ 38 ft Run 1: 38-43 ft.	282.0	Rock
40	Biotite rich GNEISS, rock weathering Increasing with depth		Recovery - 22/60" = 37% RQD - 0/60" = 0%		H

